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Abstract: Cyber-physical systems have recently been used in
several areas (such as connected and autonomous vehicles) due to
their highmaneuverability.On the other hand, they are susceptible
to cyber-attacks. Radio frequency (RF) fingerprinting emerges as
a promising approach. This work aims to analyze the impact of
decoupling tappeddelay line and clustered delay line (TDL+CDL)
augmentation-driven deep learning (DL) on transmitter-specific
fingerprints to discriminate malicious users from legitimate ones.
This work also considers 5G-only-CDL,WiFi-only-TDL augmen-
tation approaches. RF fingerprinting models are sensitive to
changing channels and environmental conditions. For this reason,
they should be considered during the deployment of a DL
model. Data acquisition can be another option.Nonetheless, gath-
ering samples under various conditions for a train set formation
may be quite hard. Consequently, data acquisition may not be
feasible. This work uses a dataset that includes 5G, 4G, and
WiFi samples, and it empowers a CDL+TDL based augmentation
technique in order to boost the learning performance of the DL
model. Numerical results show that CDL+TDL, 5G-only-CDL,
and WiFi-only-TDL augmentation approaches achieve 87.59%,
81.63%, 79.21% accuracy on unobserved data while TDL/CDL
augmentation technique and no augmentation approach result in
77.81% and 74.84% accuracy on unobserved data, respectively.

Keywords: Data augmentation, deep learning, RF finger-
printing, secure design, uncrewed aerial vehicles.

1. Introduction

Cyber-physical systemswhich are networked systemswith physical
and computational capabilities can be applied tomany areas. They
includewireless communications, search and rescue, crop spraying
and monitoring, and agricultural, fire, or wildlife surveillance.
Their integration with wireless communication capabilities brings
many advantages. Nevertheless, they may face security issues. To
name a few for a sample cyber-physical system, an uncrewed aerial
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vehicle (UAV) may be susceptible to tampering, masquerading,
spoofing, and replay attacks [1, 2].

Considering their various features and characteristics of the
systems, various security solutions are suggested at various levels.
An intrusion detection system is used to identify suspicious activ-
ities in application and network layers. Furthermore, applying
message encryption at different levels is of paramount importance
to protect data at rest and in transmission. On the basis of this
motivation, authentication and encryption-based security solu-
tions for cyber-physical systems have been widely investigated [1].
Recently, Alladi et al. [2] introduce an authentication systembased
on a physical unclonable function. Bassey et al. [3] discuss the use
of authentication codes for an Internet of Things (IoT) device,
and by leveraging the Kolmogorov-Smirnov test, it determines the
legitimacy of the user of an IoT device.

Despite the existence of encryption and authentication tech-
niques, cyber-physical systems are vulnerable to spoofing attacks
that can be coped if system-level security-complemented encryp-
tion and authentication-based solutions. For instance, Shi et al. [4]
present an anticipatory study via a generative adversarial network
(GAN)-based spoofing attacks that aim to bypass the authenti-
cation barrier by mimicking legitimate transmitters. To do so,
the GAN-based adversarial attack captures channel effects and
waveforms. Consequently, it increases the success probability of
such an attack. GANs can also be used to safeguard systems
against spoofing attacks. Sagduyu et al. [5] exploit the classification
outputs of a neural network to deceive adversaries. At lower layers
such as in the radio frequency (RF) domain, security by design can
be offered to cyber-physical systems.

RF security entails hardware-specific characteristics and
imperfections of transmitters. For example, in a connected vehicle
network, each vehicle transmitter reveals hardware imperfections
during communications via RF transmissions, which is referred
to as RF fingerprint of their transmitters. For ultra-reliable low
latency communications (URLLC) purposes, RF fingerprinting
can suggest security solutions to accelerate security services in
comparison to network-layer (L3) solutions.RFfingerprinting can
be defined as mining hardware imperfection patterns in manufac-
turing defaults [6]. DL methods are widely studied and shown to
be successful at extracting specific features. Therefore, DL models
can be utilized to detect particular RF signatures [7].

Channel impairments affect the performance of DL tech-
niques to identify the RF signatures of a transmitter [8, 9]. It is
not feasible to collect data in all circumstances. For this reason,
applying augmentation methods for RF fingerprinting is a viable
solution to deal with channel impairments during the DL training
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process. As a special type of augmentation technique, adversarial
machine learning can be used prior to training DL classifiers for
RF fingerprinting [10].

This study that was initially presented in [23] differs from the
existing works with the following points:

• To the best of our knowledge, this is the first work focusing
on applying different types of data augmentation on raw time-
domain signals in heterogeneous environments with real-world
data.

• We decouple the tapped delay line (TDL) and clustered delay
line (CDL) augmentation approaches such that 5G data is
augmented by CDL whereas WiFi data is augmented by trans-
forming it by TDL (referred to as CDL+TDL hereafter).

This study extends our work in [23] with the following
points:

• We propose a 5G-only-CDL augmentation approach where
only 5G data is augmented with CDL transform. Thus, we can
observe its difference from CDL/TDL augmentation.

• We propose a WiFi-only-TDL augmentation approach where
onlyWiFi data is augmentedwithTDL transform.Thus,we can
observe its difference from CDL/TDL augmentation.

This paper is structured as follows. Related work is reviewed
in Section 2. Section 3 gives the systemmodel and problem defini-
tion. Section 4 introduces the 5G-only-CDL andWiFi-only-TDL
augmentation techniques. Section 5 introduces the decoupled
CDL+TDL augmentation technique. Section 6 presents simula-
tion results. Section 8 concludes this work and presents future
work.

2. Related Work

This section presents the most relevant literature on RF
fingerprinting. The work presented by Cekic et al. primarily
focuses on multiple WiFi protocols (IEEE 802.11a and
IEEE802.11.g) and automatic dependent surveillance-broadcast
(ADS-B) protocol [11] to identify two main transmitter
characteristics, namely in-phase and quadrature-phase (I/Q)
imbalance, and power amplifier nonlinearity. A comparison
of additive white Gaussian noise (AWGN) and without
augmentation is presented. Shea et al. in [12] report that
complex-value networks may not be sufficient for radio signal
classification in many real-world applications.

Sankhe et al. [13] leverage raw I/Q samples to charac-
terize static channels, which eliminates the coefficient prediction
requirement. On the other hand, complex demodulated symbols
are utilized to remove channel effects. By exploiting direct current
(DC) offset and I/Q imbalance, a convolutional neural network
(CNN) is trained to recognize radio signal signatures under static
and varying channel characteristics.

Ozturk et al. [14] present a CNN-based approach that takes
spectrograms and time-series images of RF signals as inputs. Tran-
sient signals with low signal-to-noise-ratio (SNR) are prone to
noise effects; hence, it is not viable to use a time series-basedmodel.
As a result of the frequency range consideration by spectrograms,
more accurate outputs can be obtained in comparison to the time
series-based model.

RF signatures of UAVs are aimed to be identified byMohanti
et al. [15] under aCNNwithVGGbackbone.To tackle I/Q imbal-
ance, amplitude changes are fed into real and imaginary compo-
nents. It is worth noting thatDL-based fingerprintingmechanisms
can recognize UAV radio signals only if the channel conditions
do not change across training and test phases. To cope with this
phenomenon, the authors propose a processing block to arrange
I/Q instances.

Soltanie et al. [16] propose two alternate augmentation
methods that build on two finite impulse response filters. The
first method is trained under a dataset generated in MATLAB
and validated under a DARPA dataset. These methods have been
shown to run with raw I/Q instances without quadrature phase
shift keying (QPSK) modulation. The high throughput task
group (TGn) of wireless local area network (WLAN) channel
data samples are augmented with AWGN to mimic more realistic
channel behavior. This method can perform well with channels
that have not been seen before. Testing of thismethod is performed
by considering the boundaries of single-channel models.

For RF fingerprinting purposes, Reus-Muns et al. [17] built
a dataset that comprises WiFi, 5G, and LTE samples and feed
raw I/Q samples into a neural network. The focal point of that
work is to investigate the accuracy degradation between training
and test data acquired on different days with different channel
conditions. When the train and test data belong to the same day,
the accuracy is sufficient whereas when the test is performed in a
different day, the accuracy is remarkably degraded. To remediate
this issue, leveraging triplet loss functions is proposed by Reus-
Muns et al. [17] so that the accuracy is acceptable even if the
training and test data are collected on different days, i.e., with
different propagation conditions. Zhao et al. [18] present an anal-
ysis of wireless signals for UAVmodel classification by combining
auxiliary classifier generative adversarial network (ACGAN) and
Wasserstein generative adversarial network (WGAN) where root
mean squared propagation is applied as an accelerator and signals
obtained by applying a band-pass filter.

Table 1 presents a comparative list of the relevant works that
are closest to the work presented in this paper. It is observed
that the majority of the relevant works rely on either synthetic
datasets generated in MATLAB or datasets that contain modu-
lated data. Training and testing on different days (i.e., varying

Table 1.
Brief comparison of techniques proposed in close literature

CDL&TDL
Demodulated Different Multiple Augmentation
or Real Data Day Tests Waveforms Analysis

Cekic et al. [11] no yes yes no
Sankhe et al. [13] no yes no no
Mohanti et al.[15] no yes no no
Soltani et al. [16] no yes no no
Muns et al. [17] yes yes yes no
Zhao et al. [18] yes no no no
Comert et al. [19] yes yes yes no
Gul et al. [23] yes yes yes yes
This work yes yes yes yes
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channel conditions) is pursued by few studies. Since CDL/TDL
augmentation was shown to perform well in the previous work
in [19], this work aims to pursue a detailed investigation of decou-
pling CDL and TDL on 5G and WiFi waveforms, respectively
under data-scarce scenarios.

3. System Model and Problem Definition

This section introduces the system model before proceeding with
the methodological details. Figure 1 illustrates the systemmodel.

Autonomous vehicles, similar to other cyberphysical systems,
are vulnerable to spoofing attacks. Each wireless device oper-
ates with slight hardware imperfections that are caused during
manufacturing. These hardware imperfections can be recognized
on radio signals as their wireless signatures, which are referred
to as the RF fingerprint of the device. Alongside the enhanced
mobile broadband (eMBB) and massive machine type communi-
cations (mMTC), the ultra-reliable low latency communications
(URLLC) use case of 5G, requires security by design, for which
RF fingerprinting is an ideal candidate.

The problem formulation for RF fingerprinting is as follows:
A receiver aims to identify transmitters based on their RF signa-
tures in time-domain raw signal samples.

The objective of this study is to obtain high accuracy under
Day-2 data when the radio signal classifier is trained under Day-1
data. Thus, we aim to provide insights into decoupling the channel
condition effects and the transmitter impairments.The radio signal
instances in the data consist of 5G, WiFi, and LTE waveforms
in the POWDER Dataset that were originally presented in [17].
The dataset includes 60 .bin files for Day-1 and 60 .bin files for
Day-2 that are equally split between the 5G, 4G/LTE, and WiFi
waveforms for both days.

Figure 1.
In this network, base stations B5 and B6 communicates with
mobile phone by resembling B2 and B3 (spoofing attack).

4. 5G-only-CDL and WiFi-only-TDL Augmentation
Approaches

As previously stated, RF fingerprinting is susceptible to a variety
of channel and environmental conditions; as a result, RF finger-
printing requires effective solutions that are robust (in terms of
accuracy) in a variety of circumstances. Data augmentation-based
solutions are required to develop neural network architectures that
take the channel conditions into consideration. In fact, the goal of
data augmentation is to develop a method that can replicate radio
signal traces in a variety of channel and environmental settings.

In this section, we propose two augmentation approaches
where each of CDL and TDL transforms are applied to just one
of the communication technologies data (5G, WiFi) instead of
applying the same transform to all data. In the first subsection,
we first propose a 5G-only-CDL augmentation approach different
from CDL/TDL approach. Then, in the second subsection, we
propose a WiFi-only-TDL augmentation approach different from
CDL/TDL approach.

4.1. 5G-only-CDL Augmentation Approach

In this subsection, we attempt to observe the effect of applying
CDL transform on just a subset (5G data) of the dataset instead
of applying CDL transform to all data. This provides more insight
for us to present the CDL+TDL augmentation approach, which
is proposed in [23], in the following section.

We used theMATLAB 5G Toolbox (found in [20]) to apply
CDL-transform on only 5G signals for data augmentation to train
the model before the unseen data with channel impairments. A
minimalist illustration of 5G-only-CDL augmentation is given in
Figure 2.

4.2. WiFi-only-TDL Augmentation Approach

In this subsection, we would like to observe the effect of applying
TDL transform on just a subset (WiFi data) of the dataset instead
of applying TDL transform to all data. This provides more insight
for us to present the CDL+TDL augmentation approach, which
is proposed in [23], in the following section.

We suggest using the MATLAB 5G Toolbox (found in [20])
to apply TDL-transform on only WiFi signals for data augmen-
tation to train the model before the unseen data with channel
impairments.

Aminimalist illustration ofWiFi-only-TDL augmentation is
given in Figure 3.

5. Decoupled CDL and TDL (CDL+TDL)
Augmentation Approach

As stated earlier, RF fingerprinting is vulnerable to varying
channel and environmental conditions; hence, RF fingerprinting
calls for effective solutions that are robust (in terms of accu-
racy) under these varying conditions. To account for the channel
conditions in the design of a neural network architecture, data
augmentation-based solutions are needed. Indeed, the rationale
for data augmentation is to come up with a technique that can
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Figure 2.
The proposed 5G-only-CDL augmentation architecture.

mimic radio signal traces under varying channel and environ-
mental conditions.

In order to train themodel prior to the unobserved data with
channel impairments, we propose to decouple CDL and TDL
augmentation via MATLAB 5G Toolbox (available in [20]) for
5G and WiFi signals. All models are designed for full frequency
ranges. It may be scaled further for observing the desired root-
mean-square (RMS) delay spread. Therefore, special models for
line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios can
be designed [21]. In addition to the Day-1 data of the dataset,
we aim to add more knowledge that represents characteristics of
unobserved data on Day-1. The rationale for this is to cope with
the channel impairments / varying channel conditions on Day-2.
To do so, more information is added to Day-1 data so as to learn
and handle channel impairments during the test of Day-2 data.

The previous work in [19] introduces CDL/TDL augmen-
tation which is quite suitable to output augmented data from

Figure 3.
The proposedWiFi-only-TDL augmentation architecture.

5G samples. Additionally, this paper shows that augmentingWiFi
samples with TDL works well withWiFi samples.

This work introduces the decoupled CDL+TDL augmenta-
tion technique that augments 5G data samples by transforming
them via CDL transformation, and WiFi data samples by trans-
forming them via TDL transformation. Day-1 (train) data is
augmented via this augmentation technique, and Day-2 data for
testing.

It should be noted that CDL/TDL augmentation technique
applies the same transform to all waveforms types of 5G, LTE, and
WiFi data. In other words, it applies CDL transform to all or TDL
transform to all. Both transforms are highly correlated with each
other so their performance figures are alike. On the other hand, the
CDL+TDL augmentation technique decouples TDL and CDL
transforms by applying CDL transform just on 5G-waveform data
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Figure 4.
The proposed decoupled CDL+TDL augmentation architecture.

and TDL transform just on WiFi data for data augmentation
(LTE-waveform data is not augmented in CDL+TDL augmenta-
tion approach).

A minimalist illustration of decoupled CDL+TDL augmen-
tation is given in Figure 4.

Figure 5 shows the classifier structure which is adopted from
the study in [17].

6. Numerical Results

As mentioned in Section III, the POWDER dataset [17] is used in
this work to test the decoupled CDL+TDL, 5G-only-CDL, and
WiFi-only-TDL augmentation approaches. The public dataset
used in thiswork includes raw I/Q signal samples transmitted from
four base stations. The data instances of 5G,WiFi, and LTE signals
in the dataset are collected on two different days, i.e., Day-1 and
Day-2.

To copewith the channel impairments, we useCDL transfor-
mation for 5G samples and TDL transformation forWiFi samples

Figure 5.
The classifier used in CDL+TDL augmentation architecture.

Table 2.
Comparison of accuracy levels obtained on Day-1 and Day-2

Accuracy Accuracy on
on on

AugmentationMethod Day-1 (%) Day-2 (%)
Without Augmentation 99.72 74.84
TDL/CDL-based Augmentation 99.30 77.81
5G-only-CDL Augmentation 99.20 81.63
WiFi-only-TDL Augmentation 99.23 79.21
CDL+TDL Augmentation 97.35 87.59

for data augmentation. Moreover, for a better comparison of
CDL+TDL, 5G-only-CDL, and WiFi-only-TDL augmentation
approaches with CDL/TDL augmentation introduced in [19], we
use the same settings in [19] and the POWDER dataset in [17].

Table 2 exhibits the accuracy levels under the CDL+TDL
augmentation technique, 5G-only-CDL, WiFi-only-TDL, TDL/
CDL augmentation technique, and no augmentation in the four
base station scenario under the POWDER dataset. The training
process lasts 16 epochs for all cases.

Numerical results show that the decoupled CDL+TDL
augmentation achieves significantly better performance than
the TDL/CDL-based augmentation and no augmentation
approaches for the scenario where the model is trained with
Day-1 data and tested under Day-2 data. According to the
numerical results, the decoupled CDL+TDL, 5G-only-CDL,
WiFi-only-TDL augmentation techniques achieve an accuracy
level of 87.59%, 81.63%, 79.21%, respectively on previously
unobserved data whereas TDL/CDL augmentation technique
and no augmentation approach result in an accuracy level of
77.81% and 74.84%, respectively on unobserved data. Figures 6–8
demonstrate the t-SNE plots for four base stations to visualize the
impact of the augmentation methods.
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Figure 6.
t-SNE visualization for Train Data with no augmentation.

Figure 7.
t-SNE visualization for Train Data with TDL/CDL Augmenta-
tion.

Figure 8.
t-SNE visualization for Test data.

7. Future Research Challenges

This paper investigates several potential wireless security prob-
lems and proposes wireless device fingerprinting methods. In this
section, we identify a few significant open research difficulties
and possibilities to construct a robust radio frequency finger-
printing system (RFFS) for completeness. These issues include
simulation-reality gap, the impact of receiver hardware, RFFS
vulnerabilities [8].

7.1. Simulation-reality Gap

Synthetic data realism is also crucial. Deep learningmodels trained
on synthetic data are hard to apply to real radio transmissions.
The synthetic dataset’s assumptions about transmitter hardware
defects and fading channel vs actual hardware and environmental
impacts create a capability gap. Real-world data from IoT sensors
and radios are scarce, which leads to synthetic data. In natural
language processing (NLP) and computer vision (CV), large-scale
datasets like MNIST [24], Stanford sentiment [25], IMDb [26],
Sentiment140 [27], etc., are easily available. Existing datasets
cannot be used in different machine learning frameworks since
there is no standard dataset structure and organization. To achieve
universal performance, neural networksmust be trainedwithmore
data. Generalization is the first step to deployment-ready finger-
printing.

7.2. Impact of Receiver Hardware

Like transmitter hardware, receiver hardware captures and
processes emissions for fingerprinting. The receiver hardware’s
phase noise, clock offsets, filter distortions, IQ imbalance, etc.,
could alter the transmitter’s measured fingerprint to look like
a rogue or unrecognized emitter. The ADC sampling rate and
low pass filter (LPF) bandwidth are equally crucial in keeping
fingerprint features in the PSD side lobes. Using MicaZ sensors,
higher sampling rates retained fingerprint features but increased
noise [28].

The transmitter and receiver antenna polarization and orien-
tation can also affect the radiation pattern and fingerprint extrac-
tion performance. Emitter antenna hardware imperfections can
contribute to the fingerprint feature set for wireless emitter iden-
tification [29]. The quantity, type, direction, and polarization of
receiving antennas can affect fingerprinting system classification
performance.

In supervised learning, several receiver hardware captures for
an emitter might be used. The model could generalize and distin-
guish the emitter fingerprint from recorded waveforms with a
bigger training data set. Training on samples from certain receiver
hardware and analyzing the learned emitter function can deter-
mine fingerprinting algorithm independence.

7.3. RFFS Vulnerabilities

Broadcast wireless emitters are vulnerable to identity spoofing.
Impersonation, DoS, bandwidth theft, etc. It’s often forgotten
that passive receiver threats can accumulate cognitive RFFS from
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transmitter emissions. Another intriguing research challenge to
improve wireless security is developing or perturbing the emitter
fingerprint so that only legitimate receivers can extract or iden-
tify it. RF fingerprinting is expected to be robust to imperson-
ation attacks due to the difficulty of duplicating frontend impair-
ments with replay assaults due to the replaying device’s hard-
ware faults. This area is still mostly unexplored.Modulation-based
RF fingerprinting is more vulnerable to impersonation attempts
than transient-based [30]. Another study in [31] examined how
numerous low-end receivers made with cheap analog compo-
nents affected modulation-based RF fingerprinting’s imperson-
ation resistance. The receivers’ RF fingerprints differed from the
transmitter’s. As mentioned above, the receiver’s hardware defects
enhance the fingerprint feature set. They use this information
to combat impersonation attacks by claiming that the imperson-
ator would not be able to extract the receiver hardware’s finger-
print features, making RFFS even more secure. Jamming DoS
assaults, when the intruder transmits continuously on theworking
frequency, can also affect the RFFS. RFFS’s resilience to DoS
attackswill need further investigation. Jamming can alsobeutilized
for clandestine and confidential activities to hide transmitters’
RF fingerprints. In [32], WiFi transmissions were experimentally
analyzed for RF fingerprint obfuscation that only the authentic
receiver can extract. Random phase faults allow only authentic
receivers with a preshared key and randomization index to decode
the message and fingerprint.

8. Conclusion

Deep Learning (DL) has been shown to strengthen RF finger-
printing in identifying a transmitter; however, identification accu-
racy may fail in the presence of unobserved data due to changing
channel conditions. Since collecting data under all circumstances
is not feasible, data augmentation emerges as a viable approach.
Previously, Day-1 data was augmented by using TDL/CDL trans-
formation along with AWGN added on the transformed data. In
a four-base station scenario with POWDER dataset, TDL/CDL-
based augmentation can result in an accuracy of 77.81% on Day-
2. In this study, we introduce the 5G-only-CDL and WiFi-only-
TDL approaches along with the decoupled CDL+TDL augmen-
tation where 5G-waveform data is augmented with CDL transfor-
mation, and WiFi-waveform data is augmented with TDL trans-
formation. CDL+TDL, 5G-only-CDL,WiFi-only-TDL augmen-
tation approaches have been shown to increase the accuracy
level to 87.59%, 81.63%, 79.21% on Day-2 leading to a remark-
able improvement in the performance of the TDL/CDL-based
augmentation.
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