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Abstract: Data privacy and protection through anonymization
is a critical issue for network operators or data owners before
it is forwarded for other possible use of data. With the adop-
tion of Artificial Intelligence (AI), data anonymization augments
the likelihood of covering up necessary sensitive information;
preventing data leakage and information loss. OpenWiFi networks
are vulnerable to any adversary who is trying to gain access
or knowledge on traffic regardless of the knowledge possessed
by data owners. The odds for discovery of actual traffic infor-
mation is addressed by applied conditional tabular generative
adversarial network (CTGAN). CTGAN yields synthetic data;
which disguises as actual data but fostering hidden acute infor-
mation of actual data. In this paper, the similarity assessment
of synthetic with actual data is showcased in terms of clustering
algorithms followed by a comparison of performance for unsuper-
vised cluster validationmetrics. Awell-known algorithm,K-means
outperforms other algorithms in terms of similarity assessment of
synthetic data over real data while achieving nearest scores 0.634,
23714.57, and 0.598 as Silhouette, Calinski and Harabasz and
Davies Bouldin metric respectively. On exploiting a comparative
analysis in validation scores among several algorithms, K-means
forms the epitome of unsupervised clustering algorithms ensuring
explicit usage of synthetic data at the same time a replacement for
real data. Hence, the experimental results aim to show the viability
of using CTGAN-generated synthetic data in lieu of publishing
anonymized data to be utilized in various applications.

Keywords: Anonymization, clustering techniques, cluster vali-
dation, generative CTGAN.

1. Introduction

WiFi-enabled services have been booming with the advent of
widespread adoption of wirelessly connected devices. Simultane-
ously, a potential vulnerability persists in ensuring the privacy of
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usage information. Previous studies employed data privacy tech-
niques such as k-anonymity [1], l-diversity [2], t-closeness [3] and
differential privacy [4]. However, those techniques can be comple-
mented by considering data correlation, which possesses utmost
significance while exploiting big data [5]. The heterogeneous char-
acteristics underlying in OpenWiFi data possess identical traits of
Big Data. Hence, adoption of novel machine learning techniques
can eventually enable data privacy through anonymization.

Data anonymization is an essential task prior to making
the data public for numerous domain applications. Apart from
assuring privacy, it is also challenging to develop anonymized
traces, which will resemble the original data. Therefore, retaining
the resemblance of original in anonymized data by incorporating
abundant noise alters the variance among features of data. This
in turn raises issue on usability of data; which is where a trade-off
exists while ensuring both data privacy and utility simultaneously
on published data [6]. Previously, anonymization has been carried
out mostly on healthcare-related domain pertaining to privacy for
medical records of patients [7]. To the best of our knowledge, this
paper paves the way for anonymization of WiFi usage streams for
the first time.

A collaboration of unsupervised and generative adversarial
network (GAN) is considered a holistic approach to initiate
privacy preservation. Several clustering algorithms, namely K-
means, Density Based Spatial Clustering of Application with
Noise (DBSCAN) [8], Gaussian Hidden Markov Model [9] and
Agglomerative are employed to analyze the actual pattern distri-
bution of the usage traffic. While examining real-time data, there
are no prior information on labels corresponding to each stream of
data per timestamps. Therefore, employing clustering techniques
provides useful insights to comprehend the behavioural patterns
among samples in a multivariate data set. On the other hand,
adopting a deep neural generative model GAN [10, 11] harbors
generation of synthetic samples.

Commonly GAN is quite well-known in computer
vision [12, 13]. There are other robust architectures for GANs
which can yield remarkable performance on tabular data sets or
non-image data sets. In light of these, this work aims to generate
synthetic samples by leveraging a conditional tabular GAN
(CTGAN) [14]; which is a modified version of architecture to
traditional tabular GAN (TGAN) [15]. Hence, leveraging both
clustering algorithms and computational power of CTGAN, we
narrowdown ourwork to anonymization by testing and validating
in terms of quality of clusters. Therefore with support of cluster
metrics it becomes easier to validate the performance of CTGAN;
which aids us in assessing the quality of generated synthetic

Vol. 1_1 Wireless World Research and Trends 33



Adversarial Machine-Learning-Enabled Anonymization of OpenWiFi Data

Figure 1.
Anonymization of OpenWiFi network traffic data.

samples. At the same time, it is crucial to test the amount of
distortion being carried out in original samples. Simultaneously,
we want to ensure that the synthetic samples resembles statistical
properties of the original data. Figure 1 showcases topology for
demonstration of data anonymization.

Key contributions of this paper are listed below with the
ultimate goal to successfully build data anonymizationwhilemain-
taining data utility and data privacy:

• The initiation of anonymization is being undergone by lever-
aging heuristic clustering algorithms: K-means, DBSCAN,
GaussianHiddenMarkovModel (GHMM) andAgglomerative
on a normalized data to showcase the potential cluster labels
from the standpoint of distance, density and probability func-
tion.

• Leveraging unsupervised algorithms to present the formation of
cluster labels and considering clustering membership informa-
tion as a discrete variable and one of the pivotal parameters to
train CTGAN.

• In addition, production of synthetic samples by training
CTGAN on the real normalized samples and adopting effective
measures to validate similarity performance of synthetic over
real samples in terms of cluster metrics, for instance, Silhouette,
Calinski and Harabasz (CH) and Davies-Bouldin (DB) scores.

The aforementioned state-of-the-art aligns to aim for high-quality
data anonymization technique while advocating for the reliability
and trustworthiness of using synthetic data from the standpoint
of best-unsupervised algorithm and a number of cluster valida-
tion scores regardless of the distorted distribution of data. Over
the course of this study, meticulous background information
is provided in Section II highlighting the importance of data
privacy algorithms and details of use-cases for generative adver-
sarial networks (GANs) in terms of the generation of synthetic
data. Moreover, Section III discusses the coherency of the data
anonymization undertaken gradually on a multivariate time series

OpenWiFi data. Furthermore, an intensive evaluation showcases
the significant performance comparison of adopted unsupervised
clustering algorithms with regard to several validation metrics in
Section IV, evaluating the quality of anonymized data in compar-
ison to that of the real data. Finally, Section V provides the
concluding remarks summarizing the research undergone in this
study.

2. Related Work

Data anonymization is defined as the strategy of encrypting
sensitive information specifically personally identifiable data in a
dataset. In addition, the goal is to assure privacy protection of any
information belonging to an attribute in the data by preventing
information leakage when being exploited by others performing
numerous use-cases. Among various methods of anonymiza-
tion, for instance, generalization, masking, suppression, pertur-
bation, and usage of synthetic data, the latter is given the major
importance by advocating a machine learning model such as a
Conditional Tabular Generative Adversarial Network (CTGAN).
Consequently, prominent divergence infused on the real data
reveals statistical alteration of the data while ensuring commonali-
ties between synthetic and real data.

2.1. Data Privacy Algorithms

Previously data privacy preserving methods such as k-anonymity,
l-diversity, t-closeness and δ-disclosure are leveraged to initiate
privacy by compromising certain amendments to the attributes
present in data set. Before exploring the process of those methods,
it is crucial to understand following key terminologies identifiers,
quasi-identifiers (QIDs) and sensitive attributes [16]. Generally,
key identifiers signify those attributes with a unique code or
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number; which are lacking by default in our data. However, quasi-
identifier signifies attributes with discrete value denoting multiple
parameters; such as MAC address, location IDs, equipment IDs,
and timestamps in our work. Lastly, sensitive attributes are those
consisting of other attributes which can neither be termed as iden-
tifiers or quasi-identifiers (QIDs). Sweeney [17] proposed an algo-
rithm k-anonymity by elaborating on data; associated with person
specific information to ensure privacy of identity and simultane-
ously considering the issue of re-identification attack into account.
In fact, this algorithm works suitably well for selective attributes.
Therefore, there is always a way for launching an adversarial attack
using other attributes which are not being anonymized using
k-anonymity. k-anonymity performs poorly in term of guaran-
teeing privacy due to presence of unequivocal homogeneity and
background knowledge attacks. This is exactly when l-diversity
plays a humongous role in ensuring privacy. On the contrary, the
adversary seems to develop a thorough knowledge of background
distribution of data even after relying on l-diversity algorithm. In
order to avoid this consequence, Li et al. [2] introduced a novel
algorithm t-closeness, which aligns the distribution of sensitive
attributes with other attributes and therefore diminishing plau-
sible background knowledge. Differential privacy is another well-
known technique which shows improvement while incorporating
privacy measures related to health care domains. Jain et al. [4]
discusses on the amount of distortion incorporated by database
into the data; which is determined in maintaining privacy and
consequently can be found useful by data analysts.

2.2. Conditional Tabular Generative Adversarial
Network

The above mentioned techniques still lack non trivial knowledge
to convince data privacy for big data. As discussed earlier, Open-
WiFi follows 5’Vs of big data and continual deployment of diverse
data streams in high volume, therefore, those techniques are not
sufficient to ensure data anonymization. Generative adversarial
networks [11] are receiving notability lately for creation of fake
synthetic samples and are employed for anonymization applica-
tion by researchers. The architecture of this generative model
comprises of two components: generator anddiscriminator.Those
components can be designed by adopting different types of neural
networks based on the applicability. Due to the complex archi-
tecture of GANs, classifying a sample into fake or original simply
eases the entire process. This is the adversarial minmax gamewhere
the terminology of GANs turns up. The idea behind minmax
game demonstrates that generator will minimize its performance
of generating new synthetic training samples, on the contrary,
discriminator will aim for maximizing its performance in classi-
fying the generated and original samples into accurate scalar label.

min
G

max
D

V(D, G) = Ex∼pdata (x) [log(D(x)]

+ Ez∼pz (z) [log(1 −D(G(z)))]
(1)

pz (z) is input noise distribution variable representing gener-
ator’s distribution pg over data samples x. A data mappingG(z;θg)
denotes differential functionGwith parameters θg . Similarly, there
is another differential function D with θd as parameters, which
represents amapping space for discriminatorD(x;θd). In addition,

D(x) signifies likelihood of x coming from real samples and not
from distribution pg . While training GANs, the motive is to train
discriminator in assigning accurate labels for samples coming from
each distributionmapping space.At the same time, train the gener-
ator to minimize the variable log(1-D(G(z))). More clarification
about the variables referred to (1) can be understood in [11].

There are other variant of generative models which are
exploited for use case of generation of synthetic samples. Park
et al. [16] introduce the adoption of tableGAN;which includes the
architecture of deep convolutional generative adversarial networks
(DCGAN) [12]. The main focus is being shown on generating
relational synthetic tables based on existence of data attributes
associated with convolutional neural networks [16].

Another interesting study undergone by Hajihassani
et al. [18] which highlights their major contribution on
anonymizing time series sensor data obtained from IoT devices
with the help of Variational Autoencoder (VAE). Additionally,
their work shares knowledge on understanding the anonymization
into two aspects: algorithmic and systemic solutions. Considering
algorithmic solutions involving machine learning, anonymization
is being previously explored on the factors of security and
protection with the assistance of deep neural networks and
PrivacyNet [19]. Further insights on systemic solutions can be
referred on [18] since those are not related with this work. As
Xu and Veeramachaneni [15] propose the novel architecture of
conditional tabular GAN emphasizing on the marginal analysis
of data with an adoption of recurrent neural network, their work
also shares other ways to obtaining synthetic data.

Adoption of other GANs, for instance, RGAN and
RCGAN [20] are popular for generation of time series data.
McCoy in [21] share the importance of CTGAN while training
recommender systems which are useful to preserve user’s privacy.
Furthermore, this work also focuses on the reduction of actual
raw training samples and in fact, expect an augmentation of
actual samples in disguise of synthetic samples. Therefore, reliance
on large retrieval of raw data is significantly reduced while still
ensuring user privacy.

3. Methodology

Prior to the experiment on anonymization, processing the rawdata
forms primary step of pipeline. This dataset comprises of 20,000
service records collected from a small network operated over 4
weeks.Moreover, this network is composed of 2 access points aver-
aging 2 connected clients a day. Furthermore, these access points
are up and running efficiently, with clients in ON/OFF mode.
By setting the desired duration and timestamps, 20K records
are collected via REST APIs Cloud Service Portal for Open-
WiFi until sufficient information on the active access points and
clients connected to them is retrieved. In terms of processing and
setting raw data ready for CTGAN, removal of any specific quasi-
identifiers; including but not limited to any equipment IDs, loca-
tion IDs, or customer IDs are implemented. In addition, scaling
raw data samples address concerns with mode-specific normaliza-
tion of CTGAN. Thus, modelling a CTGAN builds on existing
numerical or sensitive attributes that contain atmost 15,000 traffic
records forming a multivariate time series data set.

Moreover, collected data does not contain any prior infor-
mation on labels. Therefore, adoption of unsupervised learning
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blends perfectly to comprehend underlying behavioural distri-
bution of sensitive attributes. Those distributions are analyzed
over clustering techniques such as K-means, Density Based Spatial
Clustering of Application with Noise (DBSCAN) [22], Gaussian
HiddenMarkovModel (GHMM) [9]; establishing three different
outlooks with respect to distance, density and probability factors.
Moreover, an aggregation of clusters is visualized by selecting
Agglomerative clustering algorithm. Quality of cluster validation
for each unsupervised algorithm is assessed via Silhouette, CH
and DB scores. At each stage of execution, potential clusters are
demonstrated via Principal Component Analysis (PCA)-based
dimensional reduction for more coherent understanding of orig-
inal observable samples as well as synthetic samples.

Our processedmultivariate data set consists of 15 feature vari-
ables with (11,900+) instances.While selection of optimal number
of clusters for k-means clustering is challenging, setting a range
from 2 to 10 is chosen. A trial and error execution is implemented
to determine a best optimal number of cluster out of the arbi-
trary selection the aforementioned range. To obtain the optimal
value k, a cluster validation metric Silhouette score is determined
for each value k. Consequently, the value k for k-means turns
out to be 2 with the highest Silhouette score ensuring grouping
of observations based on distance heuristic with the focus on
statistical similarity in data distribution of a multivariate dataset.
Furthermore, the Silhouette score is an unsupervised clustering
metric which quantifies the quality of the clustering of samples
into the chosen optimal number of clusters i.e. k. The higher the
Silhouette score (with a maximum score of 1) indicates a higher
quality of grouping within each cluster and sufficient separability
between them.. On the other hand, estimating optimal parametric
values for DBSCAN (eps and minPts) undergoes an exhaustive
search approach highlighting highest Silhouette score [22] The
parameters eps and minPts are data dependant where eps stands
for the radius to be followed with neighboring points from a
particular data point in a cluster. In addition,minPts signifies the
minimum neighboring data points required to be at a distance eps
forming a dense distribution of data in a cluster.DBSCAN further
identifies some samples as outliers which is bound to occur on high
dimensional heterogeneous real data.

Therefore, minimum neighbouring points (minPts) 5 and a
distance threshold epsilon (eps) 0.038 are selected. The number
of states obtained for GHMM is domain-dependent. Kullback
Leibler (KL) divergence has been used to obtain empirical prob-
ability distribution functions on HMM models with states 2, 3,
and 4 on 1000 real RSSI WiFi signal samples [23]. Since there is
a small difference between the KL divergence when using 2, 3, or
4 hidden states [24], a GHMMwith 3 states is used to model this
time series data. Additionally, in order to obtain a more cohesive
view of the data, using agglomerative clustering withWard linkage
is also carried out in this work. Generally, agglomerative clustering
follows an iterative hierarchical process starting from a single data
point as a cluster and eventually merges into another cluster by
identifying the closest pair of clusters.

4. Experimental Results

Tuning of parameters to achieve the highest Silhouette score
enables analysis of the points exhibiting similar statistical prop-
erty grouped into clusters. Initially, the original behaviour of real

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.
Clustering visualization of real: (a–d) and synthetic data: (e–h).

data set right after preprocessing is learnt through clustering tech-
niques as demonstrated in Figure 2(a–d); representing K-means,
DBSCAN, GHMM and agglomerative algorithms respectively.
On examining the Silhouette scores obtained for each technique,
it is observed K-means acquires the highest Silhouette score with
optimal cluster value 2 (k). Similarly, optimal cluster values for
DBSCAN,GHMMand agglomerative obtaines k= 3 respectively.
At the same time, training a complex deep neural network archi-
tecture like CTGAN takes longer than expected while searching
for best parameters suited for trained model. It is also challenging
to validate the performance of synthetic samples generated by
CTGAN. A well trained CTGAN is analyzed by understanding
the performance loss convergence corresponding to two neural
networks: generator and discriminator respectively as shown in
Figure 3.

Most common problems which thrive while training GANs
are mode collapse and loss convergence. This incorporates adver-
sarial game between two neural networks where either there is a
decrement in performance of generator loss and simultaneously an
increment on discriminator loss. In addition, initial performance
on acquiring the cluster validation scores for real data is analyzed
as in Table 1. Furthermore, CTGAN is being trained to generate
synthetic samples on being conditioned to discrete column of a
data set; which contains cluster labels from each clustering algo-
rithms at a time. Themainmotive is not limited to simply generate
synthetic samples by exploiting generative model; but to check
whether synthetic data can be relied upon as compared to real
data. In order to assess the quality of synthetic data, clustering
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(a)
(b)

(c) (d)

Figure 3.
Convergence of loss curves for CTGAN.

Table 1.
Cluster validation scores of unsupervised algorithms on real data

Real Data
Unsupervised Calinski
Algorithms Silhouette Harabasz Davies Bouldin
K-means 0.642 23342.92 0.599
DBSCAN 0.552 11659.34 5.559
GHMM 0.629 24788.87 0.529
Agglomerative 0.635 26109.21 0.501

Figure 4.
Initiation of data anonymization leveraging clustering algorithms.

algorithms are employed which reflect the performance score for
each synthetic and real data. As a result, more similarity or close
the value for each metric, higher is the indication of replacing real
with synthetic data. The initial real data (D) in Figure 4 is set with
target attribute; which consists of labels obtained from K-means.

Moreover, we retain dimensionality reduction of real data
(D) through PCA obtaining low dimensional data (d); which also

mitigates the problem collinearity among features. The core task
for training generator of CTGAN requires conditional vectors.
However, target attribute with labels 0 and 1 of K-means is
considered as discrete variable while continuous variables as rest
of the attributes or features existing on real data. Therefore,
labels in discrete variable are utilized as conditional vectors to
generate synthetic samples. A synthetic data (D′) is obtained
after training CTGANwhile tuning for convergence with specific
hyper-parameters demonstrated in the form of a loss curve in
Figure 3(a).

This synthetic data (D′)) is further visualizedwith the help of
PCA; forming another low dimensional data set (d′). Accordingly,
evaluation of cluster metrics on (d′) are computed. This exact
method is carried out followed by altering the target variable subse-
quently with labels of DBSCAN, GHMM and agglomerative
clustering algorithms, and correspondingly scores are calculated.
Consequently, loss curves demonstrated in Figure 3(b), (c) and
(d) are also checked for convergence after setting the labels for
DBSCAN, GHMM and agglomerative algorithms as conditional
vectors for generator. The cluster validation scores computed on
synthetic data can be understood from Table 2.

While comparing the validation scores of K-means on both
Tables 1 and 2, there is decent clarity which shows resemblance in
scores for all three metrices. However, there is significant amount
of deviation in scores for DBSCAN with respect to Silhouette,
CH and DB. Similar to the Silhouette score, CH and DB scores
aim to quantify quality of cluster formation. For instance, a higher
CH score signifies better quality of clustering from the perspec-
tive of factors inclusive of within-cluster variance and between-
cluster variance. Moreover, DB is quite the opposite of Silhouette
and CH scores as it measures the average computation of inter-
cluster distance and within-cluster dispersion of a cluster. More
importantly, a lower DB score denotes greater cluster formation
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Table 2.
Cluster validation scores of unsupervised algorithms on
synthetic data

Synthetic Data
Unsupervised Calinski
Algorithms Silhouette Harabasz Davies Bouldin
K-means 0.634 23714.57 0.598
DBSCAN 0.171 3742.45 1.836
GHMM 0.409 8865.44 0.770
Agglomerative 0.507 12188.80 0.769

quality. While comparing scores for GHMM, CH score reflects
high deviation as compared to Silhouette andDB.On the contrary,
agglomerative achieves reasonable scores for all metrices of both
real and synthetic data. In this study, we intend to look for simi-
larity between the scores for both real and synthetic data. For
instance, K-Means preserves the statistical properties in synthetic
data even after incorporating noise or conditional vectors by
CTGAN into real data.

K-means is compatible while analyzing the performance of
cluster validation scores from the perspective of data anonymiza-
tion [25]. Additionally, a baseline algorithm K-Means on real
data is selected to compare the cluster validation scores with each
algorithm from synthetic data. It is observed that K-means exhibits
resemblance in scoreswhile comparing cluster validationmetrics of
real and synthetic data as shown inTables 1 and2, respectively.This
coherently indicates that there is no significant statistical implica-
tion in the application context of data anonymization. However,
DBSCAN, GHMM, and agglomerative algorithms result in the
variation of both low Silhouette and Calinski Harabasz scores,
and higher Davies Bouldin scores. In the context of application
data anonymization and deviation in scores, it is understandable
that DBSCAN is sensitive to outliers which results in perfor-
mance downgrade under synthetic data when compared with the
baseline algorithm. Similarly, the poor performance of GHMM
and agglomerative algorithms highlights presence of noise in the
synthetic data and involvement of model complexity with param-
eter initialization based on the data distribution. To compre-
hend deviation, we establish a visual analysis forming clusters of
synthetic data for each algorithm shown in Fig. 2 (e-h); denoting
K-means, DBSCAN, GHMM and agglomerative algorithms. On
examine those figures, we encounter a skewed distribution of
cluster labels as compared to Figure 2(a–d); which is rational to
occur on a synthetic data. The reason of such distortion depends
on the conditional vectors provided to train the generator ofs
CTGAN. The resemblances in validation scores as seen on both
real and synthetic data also provide assurance of preserving statis-
tical properties similar to samples of real data; which is an essential
factor as discussed in the earlier sections. Furthermore, this ensures
that the synthetic data canbe reliedupon and effectively utilized for
numerous applications.

5. Open Issues, Challenges, and Opportunities

The usage of multivariate time series OpenWiFi data where this
study aims to adopt data anonymization and forecast the genera-
tion of the skewed distribution of synthetic samples already lack
prior information of ground truth. Simultaneously, the analysis

focuses on mimicking cluster labels / ground truth based on the
data distribution present in real and synthetic data setting an
example to comprehend the problem only from the standpoint
of the statistical context. However, other ways to augment the
trustworthiness of synthetic data include privacy risk assessment,
evaluating downstream tasks, and incorporating the review by
domain experts who are knowledgeable about real data and will
provide valuable feedback on synthetic data.

Every new data anonymization technique needs to cope with
several challenges. Re-identifying instances of anonymized data,
and safeguarding data utility is just one to mention. The latter can
be understood if there is a loss of pivotal information in the real
data, which can pave the way for an effective decision capability
while exploiting the anonymized data. In addition, the dynamicity
ofmultivariate time series data needs to be taken into account since
it consists of temporal dependency and may impact anonymized
data.Moreover, the scalability of the proposed framework is also of
paramount importance which needs to be addressed while dealing
with large volume of data. However, consistent performance of
data anonymization is expected while safeguarding the data utility
regardless of exploiting big data. Furthermore, scalability may also
be studied from the use of CTGAN, which expects a large volume
of data to train itself, therefore would ensure better prediction
ability by studying the distinctions between synthetic and real data.

The idea of adversarial machine learning-enabled anonymiza-
tion imparts the efficacy of data sharing across different domains
such as ethical use of data by adopting ameasure of privacy protec-
tion of sensitive information in the data.

6. Conclusion

Data anonymization is a crucial task for operators to augment
privacy of information; which furthermore meets required user
demands. This work summarizes the generation of synthetic
samples by deploying conditional tabular GAN to replace real
data instances with synthetic samples. Incorporation of clustering
mechanism highlighted heterogeneous distribution of OpenWiFi
traffic on the grounds of underlying factors such as distance,
density and probability of samples existing in both real and
synthetic data. In addition, computation of cluster validation
metrics by well-known Silhouette, Calinski and Harabasz and
Davies-Bouldin scores have been undergone to comprehend reli-
ability of synthetic data. A wise similarity comparison of those
scores has been checked while assessing synthetic with real
data. Moreover, two dimensional visualization at every stage of
implementation enables us to understand the original and the
skewed distribution of synthetic data. This work has particularly
focused on resemblance in the unsupervised validation metrics,
which invokes the preservation of statistically correlated proper-
ties among samples. By leveraging this knowledge, extension of
this work includes incorporation of other machine learning and
privacy-based metrics to improve data anonymization.
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