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Abstract: The vulnerability of 5G networks to jamming attacks
has emerged as a significant concern. This paper contributes in two
primary aspects. Firstly, it investigates the effect of a multi-jammer
on 5G cell metrics, specifically throughput and goodput. The
investigation is conducted within the context of a mobility model
for user equipment (UE), with a focus on scenarios involving
connected vehicles (CVs) engaged in a mission. Secondly, the
vulnerability of synchronization signal block (SSB) components
is examined concerning jamming power and beam sweeping.
Notably, the study reveals that increasing jamming power beyond
40 dBm in our specific scenario configuration no longer decreases
network throughput due to the re-transmission of packets through
the hybrid automatic repeat request (HARQ) process. Further-
more, it is observed that under the same jamming power, the phys-
ical downlink shared channel (PDSCH) is more vulnerable than
the primary synchronization signal (PSS) and secondary synchro-
nization signal (SSS). However, a smart jammer can disrupt the
cell search process by injecting less power and targeting PSS-SSS
or physical broadcast channel (PBCH) data compared to a barrage
jammer. On the other hand, beam sweeping proves effective in
mitigating the impact of a smart jammer, reducing the error vector
magnitude root mean square from 51.59% to 23.36% under the
same jamming power.

Keywords: Cybersecurity, connected vehicles, jamming detec-
tion, 5GNR.

1. Introduction

The susceptibility of 5G NR to external attacks, particularly
jamming, is a significant concern given its inherent nature of wire-
less radio frequency transmission [1,2]. Jammers have the potential
to deplete substantial resources and disrupt critical applications,
posing serious risks to areas like national defense, self-driving
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technology, public safety, and healthcare, as 5G and beyond
infrastructures become increasingly essential for government agen-
cies and commercial businesses [3]. The rise in electronic attacks
on 5G networks, with jamming being a predominant method, has
been noted [1].

Jamming attacks including proactive, reactive, barrage,
function-specific, and protocol-specific [4, 5] manifest at
various levels, including physical, network, and application
layers, ranging from radio frequency interference that
blocks wireless transmission to the distortion of packets in
legitimate communications. These attacks range from blocking
wireless transmission through radio frequency interference to
distorting packets in legitimate communications. Notably, the
synchronization signal (SS) block is a crucial component of the 5G
waveform, and attacks on this block can lead to denial of service,
increased overhead in terms of re-transmission, and heightened
power consumption [6]. In comparison to barrage jammers,
which apply jamming signals across the entire 5G resource grid,
attackers can enhance the impact and efficiency of their attacks by
specifically targeting the SS block.

To address these concerns,we investigate the characteristics of
barrage jamming and protocol-specific jamming attacks, utilizing
the spatio-temporal parametric stepping (STEPS) mobility
model [7]. Our specific contributions are outlined as follows:

1. Study the impact of multi-jammer attack scenarios on 5G cell
metrics, including throughput and goodput.

2. Examine the impact of mobile user equipment (UE), particu-
larly utilizing the STEPSmobility model, along with the spatial
placement of jammers to achieve maximum disruption of cell
metrics..

3. Investigate jamming attacks on the 5G synchronization signal
block (SSB), various reference signals such as primary synchro-
nization signal (PSS), secondary synchronization signal (SSS),
and demodulating reference signal (DM-RS) in the physical
broadcast channel (PBCH). This exploration encompasses the
extraction of the physical cell identity (PCI) and master infor-
mation block (MIB).

Thepaper is organized as follows: Section2 introduces related
works, while Section 3 discusses the network, mobility, channel,
and jammer models. Section 4 presents the performance analysis
of the network under jamming, including the vulnerability of the
SSB concerning jamming power. Finally, Section 5 provides the
conclusions.
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2. Related Work

Several studies have explored jamming attacks in 5G networks,
categorizing them based on their strategies to disrupt legitimate
signals [8–13]. While individual jamming attacks have been exten-
sively studied, there is a need to investigate the impact of multiple
simultaneous jamming attacks on 5G networks [14]. Under-
standing this scenario is crucial for developing more robust detec-
tion and localization algorithms tailored to critical 5G scenarios.
Simultaneous attacks can lead to severe consequences, with longer
jamming durations and reduced resource usage, posing challenges
for detection and localization techniques.

Tague et al. [15] investigated flow-jamming attacks in simple
wireless networks, focusing on metrics such as jamming impact,
efficiency, and resource variation using linear programming. In
a flow-jamming attack, adversaries strategically place multiple
jammers within a network to disrupt the flow of communica-
tion. This type of attack is categorized into two forms based
on their attack control entity: a centralized flow-jamming attack,
where a central control entity is involved, and a distributed flow-
jamming attack, where jammers operate autonomously without
centralized control. Cheng et al. [16] investigated the impact of
multi-jammer attacks in wireless sensor networks (WSNs) and
proposed two localization algorithms: M-cluster and X-ray. In
their proposed topology, sensor nodes in the network are catego-
rized as jammed, unaffected, or boundary nodes. The increasing
number of jammers leads to broader jammed regions, amplifying
the jamming effect and posing challenges for network defenders.
While studies like [15] and [16] establish the foundation to under-
stand the impacts of jamming in simpler network scenarios, and
proposedpreliminarymodels for jammer localization, recent devel-
opments focus on the complex dynamic 5G network configura-
tion. For instance, Liu et al. [17] introduced a localization method
to locate multiple jammers in wireless networks by computing
jamming signal strength (JSS) using ambient noise floor (ANF).
Also, Atya et al. [18] implement a jamming mitigation technique
for wireless networks based on the 802.11a standard. This tech-
nique aims to preserve the network’s throughput even in the pres-
ence of a jamming attack. The paper evaluates the performance of
the mitigation technique in the presence of multiple jammers in a
network with 50 nodes.

In addition to the number of jammers in a jamming attack
scenario, the impact of the attack can be amplified by targeting
vulnerable and critical control signals in the 5G resource grid.
Some works that investigate the vulnerability of critical 5G NR
channels include [8, 9, 19]. Wang et al. [19] propose a scheme
to detect an intelligent jammer attacking the PBCH using prin-
cipal component analysis. This attack disrupts the MIB recovery
and cell connection process. The proposed method’s advantage
is its independence from any attacker information, as it employs
adaptive thresholding computed from statistics. The vulnerability
of PBCH and the physical downlink control channel (PDCCH)
in 5G new radio (NR) to selective jamming attacks is discussed
in [8]. This design flaw becomes particularly alarming when
higher-frequency carriers are considered, requiring the jammer to
be in close proximity to the mobile station for an effective attack.
Lichtman et al. [9] emphasize the vulnerability of 5G NR chan-
nels, including PDCCH, PBCH, and physical downlink shared
channel (PDSCH), to jamming attacks. They introduce PBCH

jamming and PSS jamming as potential high-impact attacks,
underscoring the need for specific considerations to enhance the
security of 5G NR. This study investigates vulnerabilities arising
from the connection between implementations of the 5GNR and
long term evolution (LTE) protocols. These works emphasize the
need for specialized countermeasures to protect against both broad
and targeted jamming attacks.

Although localization techniques can identify the jammer’s
location, mobile jammers remain a significant threat, particularly
in vehicular networks and unmanned aerial vehicular networks,
where rapid transmission restoration is crucial [4, 20]. Conse-
quently, localizing the jammer is imperative for implementing
security measures against the jammer and restoring transmission
in such mobile environments. Rani Dey et al. [21], propose a
real-time mechanism for detecting and localizing denial of service
(DoS) attacks in vehicular networks. Their approach utilizes
data packet counters and average packet delivery ratio (PDR),
augmented with a supervised machine learning-based solution
to enhance robustness and consistency. By leveraging PDR and
triangulation-basedmethods, they successfully localize both inten-
tional and unintentional DoS attacks.

The interaction between mobility and jamming is explored
in [22,23], where the authors examine the influence of movement
patterns on the effectiveness of jamming and the strategies for its
mitigation. Balakrishnan et al. [22], analyze the impact ofmobility
on physical layer security using an analytical model for secrecy
metrics, focusing specifically onmmWave users under the random
waypoint mobility model. Meanwhile, Malebary et al. [23], inves-
tigate the effects of jamming attacks under mobility and behavior
in IEEE802.11p networks. Their study evaluates jamming effec-
tiveness under different mobility patterns and proposes a jammer
detection scheme tailored for IEEE802.11p networks. Addition-
ally, et al. [24], conduct an extensive investigation into interference
mitigation techniques, assessing the impact of reaction delay and
interference signal length on car-to-car communications. These
studies provide valuable insights into mitigating interference and
enhancing security in vehicular networks. We summarize and
compare our contribution with existing studies in Table 1.

This study delves into the intricate aspects of 5G networks
when subjected to jamming attacks. It incorporates a mobility
model to illustrate the movement of UEs across the network and
areas affected by jamming. Signal attenuation is considered in the
jammer models to simulate the impact of jammer locations in
the network. Additionally, the study accounts for multi-jammer
scenarios, discussing the positions of jammers, their overlapping
areas, and the effective number of jammers. This investigation
contributes to a deeper understanding of the susceptibility of 5G
networks to jamming attacks and provides insights that can inform
thedevelopment of robust jammingdetection andmitigation tech-
niques.

3. System Model

3.1. 5G Network Model

We employ multiple UEs and multiple gNodeBs (gNBs) to simu-
late multi-user scenarios in 5G networks. To comprehensively
assess the impacts of inter-cell interference and user mobility, our
study establishes a dynamic network configuration that allowsUEs
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Table 1.
Gap analysis and contributions of this work with respect to the existing studies in the literature
Contributions This work [25] [26] [27] [19] [20] [28] [22] [23] [24]
Detection Algorithm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mobility ✓ ✓ ✓ ✓ ✓ ✓ ✓
Presence of Multi-Jammers ✓
Attacks on Different Reference Signals ✓

to move freely within their designated cell areas, introducing a
layer of complexity reflective of real-world scenarios. Each gNB is
configured to cover a distance of Rcell with a transmit power of
PTxgNB.Within the coverage area of each cell, nUE UEs are randomly
positioned to capture the heterogeneity anddistributionof users in
5G networks. UEs are equipped with a single antenna for commu-
nication, enabling them to receive digitally modulated transmitted
signals.

In addition, nRB physical resource blocks are considered for
data transmission and reception. Each resource block comprises 12
subcarriers with a spacing ofΔf for frequency separation between
neighboring subcarriers. Furthermore, nssbRB resource blocks, as per
the standard, are assigned to the SSB. Parameters such as down-
link carrier frequency FDL

c , downlink bandwidth BWDL, uplink
carrier frequency FULc , and uplink bandwidth BWUL define the
central frequency and spectral space for both downlink and uplink
transmissions. The downlink application data rateCDL

app quantifies
the total amount of data reliably transmitted from the gNB to the
UEs within a given timeframe.

3.2. Mobility Model

To address the challenges associated with traditional mobility
models like random waypoint and random walk in the context
of user mobility, this study adopts the STEPS model [7].
The STEPS model offers a versatile framework for simulating
diverse humanmobility patterns, allowingmanipulation through a
concise set of parameters. Incorporating the principles of preferen-
tial attachment and location attraction, the STEPSmodel captures
intrinsic spatio-temporal correlations in human mobility behav-
iors. Notably, the model leverages a power law distribution to
govern both spatial attraction and temporal preference, enhancing
adaptability. The probability density function (PDF) of this power
law distribution is defined as

P [D = d] =
β

(1 + d)α , (1)

where d represents the distance from the preferred zone, β is
a normalizing constant ensuring the PDF integrates to 1 at all
distances, and α is the power law exponent determining the inten-
sity of zone attraction. The power law also dictates the duration a
node stays in its preferred zone, expressed as

P [T = t] = ω
tτ
, (2)

where τ and ω are parameters that model the staying time T of
a node in a particular zone within the mobility model. τ denotes
the temporal preference level of the node, reflecting the degree to

which the node prefers to remain within a specific zone and ω is
the normalization factor ensuring the PDF integrates to a total
of 1. Adjusting the power law factor allows for the generation
of diverse mobility patterns, ranging from completely random to
highly localized.

3.3. Channel Model

This study explores multipath propagation in urban environ-
ments by employing the widely adopted clustered delay line
(CDL) model. The CDL model amalgamates paths with distinct
delay spread (DS) and angle-of-arrival characteristics, effectively
capturing complex signal interactions within urban settings,
encompassing both line-of-sight (LOS) and non-line-of-sight
(NLOS) components. The received signal, traversing the CDL
channel, accounts for signal intensity variation caused by clus-
ters’ impairments in the environment. Additionally, the channel
model includes the fundamental free space path loss (FSPL),which
factors in the decrease in signal intensity due to distance. Based on
the FSPL model, the received signal power is expressed as follows,

Pr = Pt + Gt + Gr − 20 log [ λ2

4π2d2
], (3)

where Pt represents the transmitted power, Gt and Gr denote
transmitter and receiver antenna gains, and λ andd representwave-
length and transmitter-receiver distance, respectively. The incor-
poration of the CDL model and FSPL contributes to the under-
standing of interference and channel attenuation dynamics.

3.4. Jammer Model

Abarrage jammer emits Gaussian noise across the entire 5G down-
link bandwidth. The FSPL model is employed to consider signal
attenuation and distance-related propagation effects. To simu-
late a real-world jamming attack more accurately, the jamming
signal undergoes transmission through the CDL channel model,
accounting for the time-varying nature of wireless communication
and incorporating precise signal distortions. Similar to the received
signal power in (3), the power received by the user equipment (UE)
from the jammer (Prxj ) is expressed as

Prxj = Pj + Gj + Gr − 20 log [ λ2

4π2dj2
], (4)

where Pj denotes the jammer’s transmit power, and Gj and dj
represent the gainof the jammer antenna and thedistance of anode
to the jammer, respectively.
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Table 2.
Simulation settings
Parameter Value Parameter Value
nUE 20 Rcell 500 m
PTxgNB 32 dBm nssbRB 20

nRB 51 nRE 1 12 nRB
Δf 30 kHz FDL

c 2.635 GHz
BWDL 20MHz CDL

app 16 kbps
Duplex Mode FDD FULc 2.515 GHz
BWUL 20MHz RLC SDU Size 9 kb
Channel Model CDL-A DS 30 ns
1nRE represents the number of resource elements.

Moreover, a smart jammer in this context is defined as a
jammer that strategically transmits its power on a specific portion
of the resource grid (RG), therebymaking its actionsmore energy-
efficient.

4. Performance Analysis of Mobility, Jammer
Position, and Targeted Reference Signals

In this study, the MATLAB 5G Toolbox is employed to assess the
impact of a jamming attack within the dynamic context of amulti-
user 5Gnetwork. The evaluation takes into account factors such as
UE mobility, jammer position, and targeted reference signals. The
simulation inputs are determined based on parameters outlined in
3rd generation partnership project (3GPP) specifications [29–32],
while the transmit power1 of the gNB is adapted from the findings
in [33]. The simulation is operated on the 5GNR n7 band with a
center frequency of 2.635 GHz based on the 3GPP specifications.
For clarity, Table 2 provides a comprehensive list of parameters
and assumptions utilized in the simulation scenario, as discussed
in Section 3.

4.1. Cell Network Metrics Under Jamming

The movement of UE induces changes in path loss values and
received signal strength (RSS), directly influencing the received
signal quality. Signal strength variations, such as a decrease in
signal strength, result in a diminished signal-to-noise ratio (SNR),
thereby elevating the likelihood of errors and packet loss. In
scenarios involving a jamming attack, where intentional interfer-
ence disrupts the communication link, these fluctuations in signal
intensity become critical.

As the signal strength of a UE diminishes due to path loss, its
susceptibility to the effects of the jamming attack increases. Inter-
ference signals can further deteriorate the legitimate signal, making
it challenging for the UE to accurately receive and decode data.
The impact of the jamming attack can vary over time and space as
the UEmoves and encounters fluctuations in signal intensity. This
dynamic nature underscores the importance of considering both

1 This power is correspondence to effective isotropic radiated power
(EIRP).

spatial and temporal dimensions when assessing the effectiveness
and consequences of jamming attacks on the communication
system.

To comprehensively assess the impact of a jamming attack
within a realistic multi-cell/multi-user UE 5G NR scenario, an
end-to-end link-level simulation has been established. This simu-
lation takes into account UE mobility and integrates all functions
associated with the jamming scenario, spanning both the phys-
ical layer (L1) and the medium access control layer (MAC - L2).
Key components, including the MAC scheduler, modulation and
coding scheme (MCS), hybrid automatic repeat request (HARQ),
and channel state information (CSI) configuration, are considered.

The evaluation of network metrics, cell throughput, and
goodput provides insights into the performance of the commu-
nication system under the influence of a jamming attack. This
holistic simulation framework enables a thorough examination of
the interplay between various system functions and their collec-
tive impact on network performance in the presence of jamming-
induced challenges.

The impact of network metrics in relation to the number of
jammers is visually represented in Figure 1. To specifically inves-
tigate the influence of varying numbers of jammers, the distance
is fixed at 224 meters. This approach ensures a focused exami-
nation of the effects of changing jammer quantities while mini-
mizing distance-related factors’ impact on the results. The goal
is to avoid variations in jamming signal strength due to distance
fluctuations.

With a single jammer present, both throughput and goodput
experience a significant decrease, with throughput dropping by
46.78%. Introducing a second jammer further exacerbates the
degradation of cell throughput, resulting in an additional 26.12%
decline. However, the introduction of a third jammer leads to a
marginal deterioration in cell metrics, approximately 8.16%, indi-
cating an overlapping affected area. In a realistic scenario involving
multiple jammers within a 5G cell, the throughput degrades even
with the presence of a single jammer, as verified in Figure 1, until
reaching a certain threshold of jammer density. This saturation

Figure 1.
Cell throughput and goodput vs. number of jammerswith jammer
distance of 224m at jamming power of 20 dBm.
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Figure 2.
Cell throughput andgoodput versus transmit power of the jammer
and jammer-gNB distance.

of jamming effects occurs because the network’s inherent capacity
and resilience mechanisms are severely compromised by the initial
set of jammers. Operating near its interference threshold, the
network has limited tolerance for additional jammers, diminishing
the contribution room for further disruptions.

The relationship between 5G cell throughput and goodput
concerning jamming power and jamming distance from the gNB
is depicted in Figure 2.Clearly, higher jamming power corresponds
to lower throughput andgoodput.As the jammingpower increases
from 10 dBm to 40 dBm, both throughput and goodput expe-
rience a decrease. However, when increasing the jamming power
from 40 dBm to 50 dBm, the throughput remains relatively stable,
while the goodput continues to decrease. This observation arises
because throughput is measured based on the total number of
packets, including re-transmissions, while goodput is calculated
solely based on new arrivals.

The conclusion drawn is that increasing jamming power
affects more UEs, leading to a higher number of retransmitted
packets through the HARQ process. Consequently, the total
throughput remains relatively constant, but the goodput decreases
due to the reduction in the number of new packets in the network.
This distinction emphasizes the impact of jamming power on both
retransmissions and new packet arrivals, influencing the overall
performance metrics differently.

4.2. SSB Vulnerability To Jamming

In this section, we consider two types of jamming, namely, barrage
and smart. Assuming PRxRE as the received signal power per each
resource element (RE) at the UE location, the signal-to-jamming-
noise ratio (SJNR) in the presence of a jammer is expressed as

SJNR =
PRxRE

PREj + PREN
, (5)

where PREj and PREN are the jamming and noise powers per RE
at the UE side, respectively. To disrupt the link, a barrage jammer
needs to inject a minimum power of PREj,min at the UE side per each

RE tobring the SJNRbelow the thresholdof γth. In such a case, the
total power of the barrage jammer at the UE side should be equal
to Pbj = 12 × nRB × PREj,min.

On the other hand, disrupting communication can be more
straightforward for a smart jammer targeting the SSB, which
provides UE with essential information for cell selection [34]. To
prevent the initialization of any connection, a smart jammer can
inject a portion of the power, denoted as

PREj,min =
PRxRE
γth

− PREN , (6)

on SSB bursts, thereby making the jamming process more energy-
efficient2. In this case, the jammer searches for PSS and SSS to
locate the position of SSBs and transmits the jamming signal only
over the bandwidth of nssbRB × 12 × Δf .

Furthermore, a smart jammer does not need to transmit
power throughout the entire frame since the SSB bursts in 5G
are periodically transmitted for a brief time interval in every two
frames. Therefore, the total power of the smart jammer at the UE
side is given by Psj = 12×nssbRB ×PREj,min. It is noteworthy that if one
of the SSB signals (PSS or SSS) is not successfully extracted, theUE
cannot establish any connection with the gNB [35].

A smart jammer can act more intelligently by specifically
targeting the PBCH data or PBCH DM-RS signal. By extracting
the PCI through decoding PSS and SSS, the jammer becomes
aware of the location of DM-RS and PBCH. Hence, instead of
targeting PSS and SSS, the jammer can transmit power at PBCH,
focusing only on DM-RS and PBCH data, which is easier to
disrupt than PSS and SSS since PCI extraction relies on auto-
correlation, making it more robust to noise, interference, and
jamming than decoding PBCH. From another perspective, under
the same transmit power, a wider area is affected by the jammer.

To validate the aforementioned discussions and examine the
vulnerability of PDSCHand SSBunder a jamming attack, another
simulation has been configured involving both barrage and smart
jammers. Assuming the gNB is located at the origin, the jammer
and UE are positioned on the x-y plane at (100, 100) and (60, 60),
respectively. Figure 3 illustrates the equalized constellation of UE’s
downlink datamodulatedwith 16-QAM,with a jamming transmit
power of Pj = 30 dBm covering the entire RG. The root mean
square (RMS) of error vector magnitude (EVM) is reported to be
as high as 68.17%, as observed in the Figure 3.

Figures 4 and 5 depict the PSS and SSS correlation under the
jamming power Pj = 30 dBm. As it is shown, the peaks related
to SSS cell ID (N (1)

ID ) and PSS cell ID (N (2)
ID ) are clear and the

UE can successfully extract the PCI which has been set to 350.
In the sequel, a smart jammer transmits its power only to the RBs
corresponding to SSB.

Figures 6 and 7 illustrate the correlation of PSS and SSSunder
a smart jammer attack with transmit power equals Pj = 27.5 dBm.
The peak related to PSS is not extracted anymore in this power
which is 2.5 dBm lower than the barrage jammer case. Therefore,
the smart jammer targeting SSB can disrupt the network with
lower power, making the jamming process more energy-efficient,
as discussed earlier. Note that since nssbRB/nRB = 0.39 (see Table 2),

2Note that a smart jammerneeds tobe synchronizedwith the gNBthrough
a limited over-the-air processing.
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Figure 3.
Equalized PDSCH constellation – Pj = 30 dBm.

Figure 4.
PSS correlation with whole RG under jamming attack – Ptj =

30 dBm.

Figure 5.
PSS correlation with whole RG under jamming attack – Ptj =

30 dBm.

Figure 6.
PSS correlation, only SSB is under jamming attack- Ptj =

27.5 dBm.

Figure 7.
SSS correlation, only SSB is under jamming attack- Ptj =

27.5 dBm.

the reduction in jamming power is expected to be 10 log(0.39) =
−3.97 dB, proportional to the bandwidth. However, PSS and SSS
symbols are more robust to jamming compared to the PDSCH
symbols3.

The constellation of PBCHdata is plotted in Figures 8 under
jamming power of Pj = 25 dBm in which the PCI of 350 has been
extracted. However, the RMS EVM for PBCH data is reported as
51.59% which is so high that the PBCH data cannot be decoded
under such an attack. Since extracting PCI is based on correlation,
it is more robust to impairments than PBCH data. Hence, with a
jamming power of 25 dBm, the PCI is successfully decoded, but
not the PBCHdata. Thus, a smart jammer can reduce its power by
targeting only the PBCH data.

3 The EVM reported for PSS symbols is 57%, which is even less than that
for PDSCH.
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Figure 8.
Equalized PBCH constellation- Ptj = 25 dBm.

Figure 9.
Spectrogram of RG, SSB index #2 boosted due to beam sweeping-
Pj = 25 dBm.

The impact of beam sweeping on the smart jamming attack
is considered in the following analysis. Eight SSB bursts are config-
ured during two frames (20 ms), and the received spectrogram is
plotted in Figure 9. As can be seen, the third SSB has higher power
(brighter in color) which is the effect of beam sweeping.

The estimated received SJNR forDM-RS inPBCH is plotted
in Figure 10 versus the SSB index which shows the third SSB
burst is received with higher power. The equalized PBCH data
constellation is depicted in Figure 11 under Pj = 25 dBm which
shows beam sweeping can make the SSB burst more robust to the
SSB jamming attack with the PBCH RMS EVM is reported as
23.36%.

This analysis demonstrated that the information contained in
SSB (including PSS correlation, SSS correlation, and PBCH data)
can be effectively utilized for detecting both smart and barrage
jammers. Given the varying sensitivity of these features to jamming
power, fusing them into a comprehensive detectionmodel is antic-
ipated to significantly enhance the accuracy of jamming detection
in the radio frequency (RF) domain.

Figure 10.
DM-RS SJNR vs SSB bursts indices – Ptj = 25 dBm.

Figure 11.
Equalized PBCH constellation – Ptj = 25 dBm.

5. Conclusion

This work explores the susceptibility of 5G cells to both barrage
and smart jamming attacks, particularly in scenarios where user
equipments (UEs), such as connected vehicles deployed for a
mission, follow the spatio-temporal parametric stepping (STEPS)
mobility model. The assessment of network metrics, considering
jamming power, location, and varying numbers of jammers, has
been thoroughly examined. Furthermore, the impact of barrage
and smart jamming attacks on different aspects of the synchro-
nization signal block (SSB) has been investigated. The numerical
results demonstrate that a smart jammer, particularly one targeting
SSB, proves to be more efficient than a barrage jammer or a
smart jammer aimed at primary synchronization signal (PSS) and
secondary synchronization signal (SSS). Finally, the study high-
lights the efficiency of beam sweeping in enhancing the robustness
of the cell selection process against such jamming threats.
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