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Federated Learning Enhancement Through
Transfer and Continual Learning Integration:
Analyzing Effects of Different Levels
of Dirichlet Distribution
Boyuan Zhang∗ and Mohammad Reza Shikh-Bahaei

Abstract: Machine learning plays a pivotal role in modern
technology, driving advancements across various domains such as
healthcare, finance, and autonomous systems. Federated Learning
(FL) offers a significant advantage over traditional machine
learning by enabling decentralized model training without
requiring data to be centralized, thereby enhancing privacy and
security. With the advent of 6G networks, which promise ultra-
reliable low-latency communications (URLLC) and massive
machine-type communications (mMTC), FL can be significantly
enhanced. 6G’s improved bandwidth and latency characteristics
will enable more efficient data exchange and model updates,
further enhancing the adoption of FL. However, the performance
of FL can be significantly affected by data distribution, particularly
in non-IID (non-Independent and Identically Distributed)
scenarios, where FL tends to perform poorly. This paper proposes
a novel approach to enhance FL by integrating Transfer Learning
(TL) and Continual Learning (CL), named Integrated Federated
Transfer andContinualLearning (IFTCL).TLcan extract features
from client training samples to benefit subsequent clients, while
CLmitigates catastrophic forgetting caused by heterogeneous data
across clients. This integration improves FL performance under
varying degrees of heterogeneous data distributions simulated by
Dirichlet distribution, enhancing accuracy, convergence speed,
and reducing communication overhead. The proposed method’s
feasibility is validated using a publicly available radar recognition
dataset.

Keywords: federated learning, transfer learning, continual
learning, Dirichlet distribution.

1. Introduction

With the advent of sixth-generation (6G) technology, the signif-
icant increase in data volume has brought considerable attention
to machine learning, which is expected to play a crucial role in the
development of 6G wireless networks. These networks, offering
ultra-reliable low-latency communication (URLLC) [1] and exten-
sive machine-type communication (mMTC) [2], are poised to
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revolutionize technology and convenience.Machine learning influ-
ences awide range of applications that are closely tied to daily activ-
ities such as: healthcare [3], finance [4], and transportation [5].
Its ubiquity in everyday applications underscores its significance
in the contemporary digital landscape. However, it also gets access
to vast amounts of personal data that require protection from
unauthorized access and misuse.

These advancements facilitate more efficient data exchange,
seamless real-time applications, and improved performance of
various digital services. However, as 6G bandwidth and connec-
tivity improve, the accompanying surge in data volume and
increasednetwork complexity havemadeprivacy issuesmore severe
[6]. The potential for data breaches and unauthorized access is
greater than ever, making privacy protection a top priority. Tradi-
tional centralizedmachine learningmethods, which aggregate data
from multiple sources into a central repository, pose significant
privacy risks.

FederatedLearning (FL) addresses these concerns by enabling
decentralized model training. In FL, the data remains on local
devices, and only model updates are shared with a central server,
thus ensuring that personal data is not exposed or transmitted [7].
This method not only preserves privacy but also complies with
stringent data protection regulations, making FL a compelling
solution for privacy-conscious applications. However, the perfor-
mance of FL is highly dependent on the distribution of the dataset.
When the samples in each client are uniformly distributed across
each training client, the training results are generally excellent
[8, 9]. However, in real-world scenarios, data is often non-IID
(non-Independent and IdenticallyDistributed),meaning that data
distributions can vary significantly between clients [10, 11]. This
heterogeneity can lead to substantial challenges in model conver-
gence and accuracy [12]. For instance, certain clients may have
data that is biased or skewed towards specific classes or features,
causing the global model to perform poorly when aggregated
from these disparate local models. This imbalance can slow down
the convergence rate, reduce overall model accuracy, and increase
the communication burden due to the need for more frequent
synchronization and updates to achieve acceptable performance.

To address these challenges, this paper proposes a novel
approach that combines FL with Transfer Learning (TL)
and Continual Learning (CL) to enhance FL under varying
degrees of Dirichlet distribution. TL facilitates the extraction
of useful features from a set of clients [13], which can then be
utilized by subsequent set of clients to form a complete feature
extractor, thereby promoting knowledge transfer to remaining
clients and improving overall learning efficiency by freezing the
feature extractor layers of FL network to reduce communication
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Figure 1.
Systemmodel demonstration.

burden [14]. Meanwhile, CL helps to mitigate the issue of
catastrophic forgetting [15], which occurs when a model trained
on new data overwrites previously learned information, especially
reduce the impact of heterogeneity between different sets of
clients.

By leveraging these two techniques, our approach aims to
enhance the training performance of FL in non-IID environ-
ments, modelled by Dirichlet distribution [16], improving accu-
racy, convergence speed, and reducing communication overhead.

The contributions of this paper are as follows:

(1) Investigation of FL and FTL performance: We explore the
performance of federated learning and federated transfer
learning under different levels of non-IID data distributions,
providing insights into its weakness under non-IID condition.

(2) Introduction of IFTCL: IFTCL approach by integrating TL
andCLwith FL is introduced, which demonstrate its ability to
enhance training accuracy, accelerate convergence, and reduce
communication overhead in non-IID environments.

(3) Empirical validation:We validate the practicality and effective-
ness of FL, FTL and IFTCL algorithms on a publicly available
radar recognition dataset, highlighting its potential for real-
world applications.

2. System Model

In this section, the basic system models are presented, repre-
senting the context to carry out the data collection, communica-
tion and federated training process. A simple demonstration of the
system model is shown in Figure 1. The clients are responsible for
collecting radar images from different geographical locations and
various objects. After the data is collected, the collected raw data is
stored in each client. Communication between the clients and the
server is conducted viawireless communication.Throughmultiple
rounds of aggregation and updates between clients and the server,
federated learning is eventually completed.

In this experiment, in order to simulate different levels of
non-IID, each FL client is assigned a portion of the whole dataset
with varying quantities and distributions of data according to a

Dirichlet distribution, simulating a non-IID environment for FL.
Every client utilizes aConvolutionalNeuralNetwork (CNN)with
the same architecture to train for object recognition tasks.

2.1. Data Distribution

The non-IID nature of data is a challenge in FL. The Dirichlet
distribution can effectivelymodel such data distributions, which is
a multivariate probability distribution used to describe the distri-
bution of probability vectors. The probability distribution func-
tion for this distribution is:

P (p | α) = 1
B(α)

M∏
m=1

pαm−1m (1)

where p is anM-dimensional vector representing the probability of
each object’s tagm for each client, and αm is a positive parameter
that determines the concentration of the generated distribution.

From this, we can conclude that the smaller the value of α,
the more uneven the distribution of different tags across different
clients which is caused by bigger variation of different objects in
each client. Especially, when α is particularly small, it is highly
possible that not all tags will be included on each client.

2.2. Basic FL Model

Federated learning involves a set of K clients, each with its local
dataset Dk, and a central server. The goal is to train the global
model w in the server by aggregating locally computed parameters
without sharing the actual data. The optimization problem can be
formulated as the minimization of loss function:

min F (w) =
K∑
k=1

nk
n
Fk (w) (2)

where:Fk (w) is the local loss function for client k,nk is the number
of data points in client k, n is the total number of data points.

66 Wireless World Research and Trends Vol. 1_2



Boyuan Zhang and Mohammad Reza Shikh-Bahaei

Each client k performs local updates by minimizing its local
objective function using gradient descent:

wt+1k = wtk − η∇Fk
(
wtk

)
(3)

where η is the learning rate.
After a certain number of local updates, clients send their

local models to the server, which aggregates them to update the
global model:

wt+1 =
K∑
k=1

nk
n
wt+1k (4)

The algorithm above is called the Federated Averaging algo-
rithm (FedAvg).

2.3. Wireless Communication Model

The communication process includes the formation of the local
parameter in each training iteration in each client, the uplink of
the trained model parameters to the server, the aggregation of the
encodedparameters, decodingof theparameters, and thedownlink
of the parameters back to each client.

Hence that the communication system need source encoding
and some kinds of encryption. The overall process of encoding can
be represented as:

θtk = ϕ(wtk) (5)

Therefore, after the procedure of encoding, each client will
uplink its encoded parameters. The transmission process can be
denoted as the following algorithm:

µtk = β(θtk) (6)

After the transmission, the server will begin to aggregate the
coefficient by the conditional distributionof samples in each client.
Finally, the fusion of the coefficient will be decoded, and gain the
aggregated weight.

3. IFTCL Algorithm

This section delves into the structure of CNN, transfer learning
and continual learning, providing an understanding of their
definitions and mechanisms. It discusses why traditional Feder-
ated Transfer Learning (FTL) alone struggles to achieve optimal
training outcomes under highly non-IID conditions. Finally,
we introduce the Integrated Federated Transfer and Continual
Learning (IFTCL)method, and explains its operational principles.

3.1. Composition of CNN

When it comes to tasks such as object recognition, speech recog-
nition, image segmentation, and natural language processing, we
often use Convolutional Neural Networks (CNNs). A CNN is a
deep learningmodel composed ofmultiple layers, each responsible
for different functions. A CNN can be roughly divided into two
parts:

(1) Feature Extraction Part: Comprising multiple convolutional
and pooling layers, this part is responsible for extracting feature
information of the object, including shapes, contours, textures,
colors, and spatial relationships. These layers gradually extract
increasingly abstract features, transforming the input data into
high-dimensional feature representations. It can be expressed
as: wf .

(2) Classification Part: Mainly composed of fully connected layers,
this part inputs the high-dimensional features generated by
the feature extraction part into a classifier to make the final
classification decisions. The output layer of this part is usually
a softmax layer, which produces a probability distribution over
the various classes. It can be expressed as: wc .

3.2. Transfer Learning

Transfer Learning (TL) is a machine learning technique where a
model developed for a particular task is reused as the starting point
for a model on a second task. By leveraging the knowledge gained
from the first task, TL can significantly improve the performance
and efficiency of the model on the new task.

Based on the information above, in FL, if clients can be
divided into two subsets, we can pre-train one subset first and then
use transfer learning to transfer the pre-trained biases gradients
to the remaining subsets for further FL. At this point, if the pre-
trained model parameters can fully represent the object’s features,
we only need to freeze the feature extraction parts of the CNN
on these remaining clients and directly train the classification parts
to obtain the specific object labels. However, this method, known
as Federated Transfer Learning (FTL), is less effective in scenarios
where the data is highly non-IID.

3.3. Continual Learning

Continual Learning (CL), also known as lifelong learning, is a
significant concept in machine learning aimed at enabling models
to retain and accumulate knowledge over a continuous learning
process without forgetting previously learned information. Unlike
traditional machine learning models that are trained on a fixed
dataset, continual learning models are designed to adapt and learn
from data that arrives incrementally.

There are many methods of CL, such as: (1) replaying a small
portion of stored old data along with new data; (2) incorporating
additional terms into the loss function to ensure that learning
new tasks does not interfere significantly with previously learned
tasks; (3) isolating or partitioning the model parameters to prevent
interference between tasks. Among all three methods, the first
method that using replaying mechanism is the easiest to carry out,
and it can retain the same network structure as FL and FTL for
later comparision. Therefore, we utilize the replaying strategy in
our new approach.

3.4. Integrated Federated Transfer and Continual
Learning

Since traditional FL and FTL has its limitations, we propose
an Integrated Federated Transfer Continual Learning (IFTCL)

Vol. 1_2 Wireless World Research and Trends 67



Federated Learning Enhancement Through Transfer and Continual Learning Integration

approach. This method combines the advantages of federated
learning (transferring parameters instead of the entire model),
transfer learning (leveraging learned knowledge), and continual
learning (avoiding catastrophic forgetting).

The procedure of IFTCL can be described as follows: First,
we partitionN clients intoM + 1 subsets S1, S2, . . . SM , SR rather
than only two sets. Initially, federated learning is used to train on
the data of first set S1. At this time, a rough feature extractor wfS1
can be trained.

Then, using transfer learning, the feature extraction parts
are transferred to the second subset through the server, where
federated learning continues. At this point, because the model
parameters are not frozen, due to the nature of transfer learning,
the second set start learning based on the first rough feature
extractor. The second client set will form a relatively complete
feature extractor.

However, due to the non-IID nature in each client, the
composition of data in each client is highly different. The knowl-
edge learned by the previous subset will gradually be forgotten
by the next subset during training. To address this, after training
on S2, CL will enable experience replay strategy by transfering
parameters to previous trained set S1 for continual learning for a
certain round.

The following scenario is quite similar to the one described
above. After CL, its feature extraction parts will undergo TL on
S3. Once TL is completed, it will go through a certain number
of CL rounds on S1 and S2. This process will continue in the
same manner until reaching SM . In order to balance the training
iterations in each client and compare the performance of FL and
FTL later, we make the iterations in each client are the same in
total.

Compared to the FTL method mentioned earlier, this
approach aims to train the feature extractor more effectively. In
traditional FTL, clients are divided into twogroups, S and SR, with
the clients in S participating in federated training independently to
obtain the feature extractor. However, in our IFTCLmethod, the
set S in FTL is further subdivided intoM smaller subsets, which
first learn individually and then leverage transfer learning to pass
knowledge to the next client.

The advantage of this approach lies in the fact that the ulti-
mate goal is tominimize the global loss function through the aggre-
gation phase of federated learning byminimizing the loss function
of each client during local training. In scenarios where data among

clients is highly heterogeneous, each client contributes differently
to the global model during aggregation when minimizing its local
loss function. This contrasts with IID data scenarios where each
client’s gradient descent direction is generally consistent. The
multiple rounds of transfer learning in IFTCL reduce the aggre-
gation process among clients, significantly mitigating this issue.
Additionally, due to the substantial heterogeneity of client data,
continual learning is employed to ensure that the previous training
results are not forgotten during subsequent federated learning
stages, necessitating the use of replay.

After all theseprocedures, awell optimized feature extractor is
trained,we can continue the procedure in FTL, transfer the feature
extractor to SR and freeze it for further classification.

4. Simulations and Results

4.1. Experiment Setup

In this experiment, the MSTAR dataset was utilized, which is
widely recognized in Synthetic Aperture Radar (SAR) imagery.
For the purposes of this study, radar images of eight distinct objects
were selected from the MSTAR dataset. The data distribution
among clients was modeled using a Dirichlet distribution with
parameter α set to 0.3 and 1. The α parameter controls the degree of
non-IID distribution, allowing the evaluation of the performance
of federated learning methods under various non-IID conditions.

The experimental configuration involved K = 6 clients,
each equipped with a convolutional neural network consisting of
two convolutional layers. These two layers are selected to be the
feature extraction part for pre-training in FTL and IFTCL. In
the process of transfer learning, three clients are selected for pre-
training and the remaining three clients are chosen for classifica-
tion. Meanwhile, in IFTCL, the selected three clients are designed
to be three subsets, which means that local training is carried out
in each client, which greatly decreases the communication burden.
In this experiment, the total number of training rounds was set to
100, with 3,318 out of 4,459 samples being utilized for training.

4.2. Data Distribution

According to the Dirichlet distribution, data is allocated among
six clients, as illustrated in Figure 2. Notably, different clients

Figure 2.
Visual presentation of different parameters in non-IID data for each client.
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receive varying quantities of data, with smaller values of α resulting
in more imbalanced distributions. When α = 1, we can clearly
tell the distribution is uneven and unbalanced, but there are still
eight kinds of objects in each client. In cases where the non-IID
coefficient α is particularly small, as α = 0.3, certain clients may
receive very few samples for specific categories, or even none at all.

4.3. Training Performance

The evaluation of these scenarios is based on four critical metrics:
communication overhead, convergence speed, accuracy.

4.3.1. Training Accuracy

As shown in Figures 3 and 4, these graphs illustrate the training
performance of FL, FTL and IFTCL under different Dirichlet
parameters α. From a broader perspective, comparing the two
graphs, it is evident that all three methods demonstrate that as
the Dirichlet parameter α increases, the training process converges
faster, and the final training results become more accurate. Specif-
ically, when α = 1, the data is most evenly distributed compared
to α = 0.3, leading to a higher overall accuracy, with the fastest
convergence rate.

Figure 3.
Three algorithms training results comparison when α = 1.

Figure 4.
Training performance when α = 0.3.

Table 1.
The overall communication overhead comparison

Communication Overhead
FL 315.64MB
FTL 263.55MB

IFTCL 36.92MB

We can observe from the graph that regardless of the value of
α, the initial accuracy is highest for IFTCL, followed by FTL, and
then FL. This is because the pre-training step in transfer learning
inherently boosts accuracy. However, the final accuracy may not
always follow this pattern. When α = 1, the results align with
this trend, but when α is smaller, the significant differences in data
across clients can cause issues. Specifically, in FTL, the pre-trained
feature extractor may not sufficiently capture all the features, and
the frozen feature layer could negatively impact subsequent clas-
sification. From the graph, it can be seen that when α = 0.3, the
accuracy of FTL slightly lags behind that of traditional federated
learning. In contrast, IFTCL, having developed a more compre-
hensive feature extractor through training, consistently maintains
higher accuracy thanboth federated learning and federated transfer
learning.

4.3.2. Convergence Speed

In termsof convergence speed,whenα is relatively large, such asα =
1, it is obvious that the standard FL has the slowest convergence,
only approaching convergence after 75 iterations. In contrast, FTL
converges after 27 iterations, while IFTCL achieves convergence
even faster, in just 18 iterations. On the other hand, when α =
0.3, FL converges after about 82 iterations, FTL after around 50
iterations, and IFTCL after 25 iterations.

4.3.3. Computation of Communication Overhead

The communication overhead is defined as the volume of uplink
and downlink data required for the communication process until
the training reaches convergence. The results are shown in Table
1, We can see that traditional FL has the most communication
overhead. FTLmitigates the burden greatly, because it needs fewer
rounds than FL to achieve convergence, IFTCL results in a even
lower communication overhead of 36.92 MB, which is much
smaller than that of FL.

5. Conclusion

TheDirichlet distribution effectivelymodels varying levels of non-
IID conditions by adjusting its parameter, α. When α is small,
some clients may lack certain labels from the dataset. In studying
the impact of federated learning under different degrees of non-
IID conditions, it has been observed that as distribution variation
increases, the training accuracy and convergence speed of federated
learning decreases. Federated transfer learning, known for reducing
communication overhead and speed up convergence, can outper-
form traditional federated learning when the degree of non-IID is
high (e.g., α = 1). However, when α is small (e.g., α = 0.3), the high
heterogeneity causes FTL to underperform compared to FL due to
an inadequately trained feature extractor in the pre-training stage.
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To address this issue, the proposed integration of federated
transfer and continual learning trains and transfers feature extrac-
tors multiple times, using replay mechanisms to avoid forgetting
causedbyhighlynon-IIDdata.This reduces aggregation challenges
during the pre-training stage. It consistently outperforms both
FL and FTL across varying α values, achieving higher training
accuracy, faster convergence, and lower communication overhead.
These results have been validated using the MSTAR dataset.
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