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Abstract: Spectrally Efficient Frequency Division Multiplexing
(SEFDM) aims to enhance spectral efficiency by compressing
subcarriers in the frequency domain, thereby reducing the required
bandwidth. This approach primarily focuses on minimizing Inter-
Carrier Interference (ICI), which typically necessitates a complex
receiver design. We propose a simpler receiver design based on Spec-
tral Sampling and Signal Decomposition (SSSD) technique. This
technique facilitates the receiver to process Orthogonal Frequency
Division Multiplexing (OFDM) signals outside the conventional
orthogonality points in the frequency domain. Unlike traditional
SEFDM approaches, the SSSD receiver utilizes interfering carriers
as useful signals. Through simulations, we showcase the SSSD
receiver’s performance in extracting SEFDM signals and accom-
modating various pulse shapes beyond the conventional sinc pulse.
However, our results also highlight a significant challenge posed
by severely ill-conditioned matrices, which can be mitigated by
exploring alternative pulse types.

Keywords: Faster-than-Nyquist, frequency division multiplex-
ing, inter-carrier interference (ICI), orthogonal frequency divi-
sion multiplexing (OFDM), spectral efficiency, spectrally efficient
frequency division multiplexing (SEFDM).

1. Introduction

The electromagnetic spectrum is becoming an increasingly scarce
resource due to the rise in wireless communication traffic and
the inherent limitations of the available spectrum in supporting
radio communication. Global mobile data traffic forecasts indi-
cate that this upward trend in traffic volume will continue, with
significant growth expected in the coming years [1, 2]. By 2029,
mobile data traffic is projected to triple compared to 2023 levels [3].
Various approaches have been proposed in the literature to increase
5G network capacity, including techniques for improving Spec-
tral Efficiency (SE) [4, 5], acquiring wider spectral capacity [6],
applying intensive spectral reuse [7, 8], and the use of better
resource sharing to achieve higher utilization [9, 10]. While each
approach has contributed to increasing 5G network capacity,
enhancements in SE at the waveform level have made the least
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contribution. These improvements in SE primarily stem from the
integration of Multiple-Input Multiple-Output (MIMO) tech-
nology rather than the waveform itself. The increase in SE from
4G to 5G is lower than that achieved during the transition from
3G 1o 4G [11,12].

The Spectrally Efficient Frequency Division Multiplexing
(SEFDM) proposed in [13] offers an alternative waveform that
enhances SE at the waveform level. By reducing subcarrier
spacing and violating the orthogonality conditions, SEFDM
extends Faster-than-Nyquist (FTN) scheme into the frequency
domain [14]. Figure 1 illustrates and compares the concept of
SEFDM with OFDM and FDM. As a non-orthogonal multicar-
rier technique, SEFDM reduces required bandwidth by allowing
subcarrier overlapping and utilizing non-orthogonal waveforms.
However, SEFDM inherits FTN’s complexities, particularly in
receiver design [15]. The first SEFDM scheme, fast-OFDM,
aimed to double OFDM’s data rate [13]. Subsequent research
established a mathematical framework for SEFDM, employing
complex receiver structures. Performance analysis of SEFDM
using linear detectors and Genetic Algorithm (GA) detectors
revealed lower Bit Error Rates (BER) compared to OFDM,
but with increased iterations for additional subcarriers [16].
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Figure 1.

Comparison of (a) FDM, (b) OFDM and (c) SEFDM in terms of
savings in bandwidth.
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Moreover, system performance degraded significantly with higher
modulation orders. Simple linear detection methods (zero-forcing,
MMSE, and TSVD) yielded minimal BER improvements [17].
On the other hand, applying the non-linear detection techniques
such as iterative detection (ID) [18], sphere decoding (SD) [19],
and fixed sphere decoding (FSD) [20] leads to increased receiver
complexity with more subcarriers or higher modulation orders
[18-20]. A two-stage decoder combining iterative detection and
sphere decoding has also been explored [18,19]. Notably, the Bahl-
Cocke-Jelinek-Raviv (BCJR) decoder achieved 40% bandwidth
savings compared to OFDM, albeit with minor performance loss
(less than 2 dB) and iterative processing in multipath fading chan-
nels [21]. Furthermore, SEFDM has been extended to radio-over-
fiber systems [22].

Since its introduction over twenty years ago [13], the SEFDM
approach to achieve higher spectral efficiency is based on miti-
gating the Inter-Carrier-Interference (ICI) effect resulting from the
overlapping of compressed subcarriers that violate the orthogo-
nality condition. To address ICI, SEFDM employs two primary
strategies: (i) Utilizing complex decoders to minimize interference
effects; (ii) Applying robust and heavy coding to extract symbols
embedded in interference. These approaches view overlapping
subcarriers as undesirable interference to be canceled, necessitating
complex receiver designs. However, the Spectral Sampling and
Signal Decomposition (SSSD) receiver introduced in [23] offers
a promising alternative. Initially designed for OFDM, SSSD can
detect symbols beyond orthogonality points, making it potentially
suitable for extracting SEFDM signals. This paper explores modi-
fying the SSSD receiver for SEFDM signal extraction, achieving
higher spectral efficiency through reduced bandwidth require-
ments. Notably, the SSSD approach contrasts with SEFDM’s ICI
mitigation strategy, instead offering a straightforward and simple
receiver structure.

2. The Spectral Sampling and Signal
Decomposition (SSSD) Principle

The frequency domain representation of the OFDM signal R(f)
at the receiver can be modelled as:

N-1

R(f) = g DXV (F-E)+ XV (F+E)] (1)

n=0

for —co < f'< 0o, where X, = |Xn|e7€” is the transmitted symbol,
Fy = fo + %, and V(f) is the pulse shape in frequency domain,
while 7" is the symbol duration, IV is the number of subcarriers,
and £y is the frequency of the first subcarrier. As shown in [23],
Equation (1) can be simplified for the sampled received signal and
written in matrix form as follow:

X =2RV~! (2)
Where R is the FFT of the received signal evaluated at f}, =

+(fo+k/T+p(1/T)) fork=0,1,..., N — 1 and the matrix V is
found by evaluating;
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The position of f;, in frequency domain and the role of p for an
OFDM signal.
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Figure 3.

BER Performance over AWGN channel with minimum number
of 500 errors for each SNR value.

Table 1.
Parameter Value
Mapping 64-QAM
No. of subcarriers (N) 128
Subcarrier spacing (Af) 15 kHz
Cyclic-Prefix length 16 samples
Delay spread for AWGN 1sample

at f = fp. p is a parameter used to specify the spectral sampling
point deviation from orthogonality points and it can take any
value in the range =1 < p < 1 as shown in Figure 2. In other
words, the spectral sampling points will experience a deviation of
p(1/T) Hz from the orthogonality points. The simulation results
for the AWGN channel forp = 0,0.1,0.2... 0.9, shown in Figure 3
using the parameters listed in Table 1. It can be seen that SSSD can
detect the OFDM symbols beyond the orthogonality point and
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The SSSD receiver for SEFDM signal.
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BER performance using different values of 2 with minimum of 300
errors for each SNR value.

deliver the same performance for p < 0.25 and the performance
degraded rapidly for p < 0.25. Since the SSSD has the capability
to detect the OFDM signal in the presence of ICI, then the next
logical step is to use it in receiving the SEFDM signal.

3. SSSD Receiver Performance for SEFDM Signal

The SSSD can be adopted to receive and extract the symbols carried
by the SEFDM signal. The SEFDM signal is similar to the OFDM
signal with the exception that the subcarriers frequency spacing
(Af) is less than the OFDM symbol rate; Af < %, which produce
non-orthogonal signal. While £}, is defined for all values of & to be:
fe =fo+ (1 - a)%, where « is defined to be the compression
ratio. By modifying the V matrix according to the desired « value,
then, the SSSD receiver can be used to receive the SEFDM signal.
Figure 4 depict the SSSD receiver for SEFDM signal. Figure 5
illustrates the BER performance of SEFDM signals utilizing the
SSSD receiver for various values of «. Figure 6 show the impact
of & on the noise power level per subcarrier, revealing that the
noise coloration effect of 2 accompanied by a substantial increase
in the noise level even with a minor increment in «. The simulation
parameters shown in Table 2.

4. Using Raised Cosine and Triangular Pulses

The utilization of a rectangular pulse in OFDM and SEFDM yields
a sinc-shaped subcarrier spectrum, which is sampled to construct
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Noise Power distribution per subcarrier for different values of «.

Table 2.
Mapping 64-QAM
No. of subcarriers (N) 128
Subcarrier spacing (Af) 15 kHz
Compression ratio («) 0, 0.01, 0.02,...0.09, 0.1
Cyclic-Prefix length 16 samples
Delay spread for AWGN 1sample
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The spectrum of (a) Rectangular (b) Raised Cosine and (c) Trian-

gular pulse.

the V matrix. The chosen pulse shape significantly influences
the properties of the V matrix. To enhance the system perfor-
mance, alternative pulses with diverse spectral characteristics can
be explored to modify the V matrix.

For the purpose of comparison, two pulses are selected with
sinc or sinc-like spectrum: the Raised Cosine (RC) with a roll-off
factor of one and the triangular pulse. Notably, both exhibit a
distinctive main lobe in their spectra as displayed in Figure 7. The
DTFT expressions for the RC and triangular pulses, respectively,
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for a symbol period of T, are:

AT (1)

(L1
e ”(1-; . (f+7)

1 Jm(%f) ”(fr_l)f
Vre(f) = 57 . (%rf) e 2
)
[ (53]
(3]
i)
1 Zszn(%ff) gk f

Viri(f) = 5 Zsm(% )gj :

(3)

(4)

Figures 8 and 9, respectively, depict the effect of 2 on the noise
power level using RC and triangular pulses. Similarly, Figures 10
and 11, respectively, illustrate the BER performance of SEFDM
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Noise power distribution per subcarrier for the RC pulse using

different values of .
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BER Performance for RC pulse with minimum of 500 errors for
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BER Performance triangular pulse with minimum of 500 errors
for each SNR value.
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The V matrix condition number comparison for the rectangular,
RC and triangular pulses.

receiver for various values of « using RC and triangular pulses.
Additionally, Figure 12 compares the condition number of the V
matrix for the rectangular, RC, and triangular pulses, revealing
a signiﬁcant increase as « increases. The results demonstrate
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that increasing « severely ill-conditions the V matrix, leading to
substantial increase in noise levels and performance degradation.
The simulation parameters employed are identical to those summa-
rized in Table 2, except the subcarrier spacing (Af) is doubled
to maintain orthogonality condition for the RC and Triangular
pulses.

5. Simulation Results Discussion

The SSSD receiver’s performance deteriorates rapidly as subcarriers
are compressed in the frequency domain for non-zero values of
«. Even a small « value of 0.01 causes the V matrix to become ill-
conditioned, significantly increasing noise levels (Figures 5 and 6).
Since the V matrix is derived from the spectral samples of the
applied pulse, modifying the pulse shape alters the matrix prop-
erties. To compare performance, RC and Triangular pulses are
evaluated alongside the conventional rectangular pulse.

Assuming preserved orthogonality at 2 = 0, the SSSD receiver
is tested with these pulses, requiring twice the frequency spacing
used for the sinc pulse. Results show that the pure RC pulse
yields relatively lower noise levels than the sinc pulse, though still
high, leading to degraded performance due to the ill-conditioned
V matrix (Figures 5 and 6). Notably, for the RC pulse, 2=0.51
is used, as the V matrix becomes singular and non-invertible at
a=0.5.

Figure 12 compares the condition numbers of the V matrix
for three pulse shapes, revealing the Triangular pulse yields a
better-conditioned matrix for 2 <0.5. This corresponds to lower
noise levels and improved performance, as shown in Figures 9
and 11. Specifically, the SSSD receiver achieves near-orthogonal
performance using the Triangular pulse for # < 0.2, with gradual
degradation beyond this threshold. The Triangular pulse offers
enhanced performance relative to the RC pulse for 2 <0.4. The
V matrix’s condition significantly impacts noise levels, as its ill-
conditioning amplifies noise power experienced by each subcarrier.
Despite using different pulses, OFDM maintains better SE than
the SSSD receiver for SEFDM signals, primarily due to OFDM’s
ability to maintain orthogonality at lower subcarrier frequency
spacing.

6. Conclusion

The SSSD receiver can extract non-orthogonal SEFDM signals
for various compression ratios, provided the V matrix is well-
conditioned. However, as matrix condition deteriorates, noise
level increases. Thus, the primary obstacle lies in the V matrix’s
condition, rather than inter-carrier interference (ICI). This study
introduces a new perspective on the SEFDM problem, reframing
it as an ill-conditioned matrix problem. Two approaches can be
employed to address this: (i) Engineering approach: By designing
pulses yielding well-conditioned matrices, and (ii) Mathematical
approach: By modifying the matrix conditions.

To enhance SEFDM signal detection accuracy using SSSD
receivers, we propose four research directions: (1) Pulse design:
Create pulses yielding well-conditioned V matrices, (2) Diverse
pulse sets: Employ varied pulses across subcarriers, (3) Non-
uniform spacing and sampling: Explore non-uniform subcarrier
spacing and spectral sampling, and (4) Matrix regularization:
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Utilize regularization or decomposition methods for invertible
matrices with minimal error.
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